Lior Silberman's Math 223: Problem Set 9 (due 22/3/2021)

Hint for 1,2,3: if you aren't sure try what happens with small matrices $(2 \times 2, 3 \times 3, 4 \times 4, 5 \times 5)$ before tackling the general case.

Three determinants

- 1. Fix numbers *a*, *b* and let H_n be the matrix with entries t_{ij} so that for all *i*, $t_{ii} = a$, $t_{i,(i-1)} = t_{i,(i+1)} = b$ and $t_{ij} = 0$ otherwise. Let $h_n = \det H_n$.
 - (a) For $n \ge 1$ show that $h_{n+2} = ah_{n+1} b^2h_n$.
 - (b) Using the method of problem 5 below solve the recursion in the case a = 5, b = 2 and find a closed-form expression for h_n .
- 2. Let $H_n(d_1, \dots, d_n)$ be the matrix $J_n + \text{diag}(d_1, \dots, d_n)$ where J_n is the all-ones matrix and let $h_n(d_1, \dots, d_n) = \det[H_n(d_1, \dots, d_n)]$.
 - (a) Show that $h_n(0, d_2, ..., d_n) = \prod_{j=2}^n d_j$. (Hint: subtract the second row from the first)
 - (b) Suppose that $n \ge 2$. Show that $\dot{h}_n(d_1, d_2, \dots, d_n) = d_1 h_{n-1}(d_2, \dots, d_n) + d_2 h_{n-1}(0, d_3, \dots, d_n)$.
 - (c) Suppose that all the $d_i \neq 0$ and that $n \ge 2$. Show that $\frac{h_n(d_1,...,d_n)}{\prod_{j=1}^n d_j} = \frac{h_{n-1}(d_2,...,d_n)}{\prod_{j=2}^n d_j} + \frac{1}{d_1}$.
 - (d) Show that $\frac{h_2(d_1,d_2)}{d_1d_2} = \frac{1}{d_1} + \frac{1}{d_2} + 1$, and thus that $\frac{h_n(d_1,...,d_n)}{\prod_{j=1}^n d_j} = \sum_{j=1}^n \frac{1}{d_j} + 1$. CONCLUSION $h_n(d_1,...,d_n) = \left(\sum_{j=1}^n \frac{1}{d_j} + 1\right) \left(\prod_{j=1}^n d_j\right)$.
- 3. (The "Vandermonde determinant") Let x_i be variables and let $V_n(x_1, ..., x_n)$ be the $n \times n$ matrix with entries $v_{ij} = x_i^{j-1}$. We show that det $V_n = \prod_{i=1}^n \prod_{j=1}^{i-1} (x_i x_j)$.
 - (a) Show that det V_n is a polynomial in x_1, \ldots, x_n of total degree $0 + 1 + 2 + 3 + \cdots + (n-1) = \frac{n(n-1)}{2}$.
 - (b) Show that det V_n vanishes whenver $x_i = x_j$ (which leads you to suspect that $x_i x_j$ divides the polynomial).
 - RMK Note that $\prod_{i=2}^{n} \prod_{j=1}^{i-1} (x_i x_j)$ is a polynomial of total degree $\frac{n(n-1)}{2}$. It follows from (a) and the theory of polynomial rings over integral domains that $\prod_{i=2}^{n} \prod_{j=1}^{i-1} (x_i x_j)$ actually does divide the determinant, and comparing degrees of the two it follows that the quotient has degree zero, that is that for some constant $c_n \in \mathbb{Z}$, det $V_n = c_n \prod_{i=2}^{n} \prod_{j=1}^{i} (x_i x_j)$.
 - SUPP Examining the coefficient of $x_1^0 x_2^1 x_3^2 \cdots x_n^{n-1}$ show that $c_n = 1$.
 - (d) Let $V_{n+1}(x_1, \ldots, x_{n+1})$ be the matrix described above, and let W_{n+1} be the matrix obtained by
 - (i) Subtracting the first row from each row; and then
 - (ii) For *j* descending from n + 1 to 2, subtracting from the *j*th column a multiple of the (j-1)st so as to make the top entry in the column zero.
 - Let $(w_{ij})_{i,j=1}^{n+1}$ be the entries of W_{n+1} . Show that $w_{11} = 1$ that $w_{1j} = w_{i1} = 0$ if $i, j \neq 1$ and that $w_{ij} = (x_i x_1)v_{i,j-1}$ if $i, j \ge 2$.
 - (e) Show that det $V_{n+1} = \left[\prod_{i=2}^{n+1} (x_i x_1)\right] \cdot [\det V_n(x_2, \dots, x_{n+1})].$
 - (f) Check that $\det V_1 = 1$ and prove the main claim by induction.
- SUPP (Polynomial interpolation) Let $\{(x_i, y_i)\}_{i=1}^k \subset \mathbb{R}^2$ be points in the plane with distinct x_i . Show that there exists a unique polynomial $p \in \mathbb{R}[x]^{\leq k}$ such that $p(x_i) = y_i$.

Linear recurrences

- 4. Let $T \in \text{End}(V)$ and let $\underline{v} \in V$ satisfy $T\underline{v} = \lambda \underline{v}$.
 - (a) Show that $T^n \underline{v} = \lambda^n \underline{v}$ for all $n \ge 0$.
 - (b) Suppose that T is invertible and $\underline{v} \neq 0$. Show that $\lambda \neq 0$ and that $T^{-n}\underline{v} = \lambda^{-n}\underline{v}$.
 - (c) Let $p \in \mathbb{R}[x]$ be a polynomial of degree *n*. Show that $p(T)\underline{v} = p(\lambda)\underline{v}$, where p(T) is the linear map defined in the supplement to PS6.
- 5. A sequence $\underline{F} \in \mathbb{C}^{\mathbb{N}}$ satisfies a *recursion relation of degree k if we have coefficients* c_0, \ldots, c_{k-1} *such that* $F_{n+k} = \sum_{i=0}^{k-1} c_i F_{n+i}$ for all $n \ge 0$. In that case let $p(x) = x^k \sum_{i=0}^{k-1} c_i x^i$ be the *characteristic polynomial* of the recursion relation.
 - (a) Explain why we generally assume $c_0 \neq 0$.
 - (b) Show that <u>*F*</u> satisfies the recursion relation iff $p(L)\underline{F} = \underline{0}$, were $L \in \text{End}(\mathbb{R}^{\infty})$ is the left shift.
 - (c) Show that $\operatorname{Ker}(p(L))$ is k-dimensional, and that any $\underline{F} \in \operatorname{Ker}(p(L))$ is determined by $(F_0, F_1, \ldots, F_{k-1})$. (d) Suppose that r is a root of p(x). Show that the sequence $(r^n)_{n>0} \in \operatorname{Ker}(p(L))$ and that it is
 - (d) Suppose that *r* is a root of p(x). Show that the sequence $(r_{n})_{n\geq 0} \in \operatorname{Ker}(p(L))$ and that it is non-zero.

FACT A set of (non-zero) eigenvectors corresponding to distinct eigenvalues is linearly independent. ASSUME for the rest of the problem that p(x) has k distinct roots $\{r_i\}_{i=1}^k$.

- (e) Find a basis for Ker(p(L)).
- (f) Let $(F_0, F_1, ..., F_{k-1})$ be any numbers. Show that the system of k equations $\sum_{i=0}^{k-1} A_i r_i^j = F_j$ ($1 \le j \le k$) in the unknowns A_i has a unique solution. (Hint: problem 3)
- 6. Practice with complex numbers
 - (a) Let w = a + bi be a non-zero complex number. Show that there are two complex solutions to the equation $z^2 = w$. (Hint: write z = x + yi and get a system of two equations in the unknowns x, y).
 - (b) Let a, b, c ∈ C with a ≠ 0. Show that the polynomial az² + bz + c ∈ C[z] factors as a product of linear polynomials. (Hint: use the quadratic formula)

Challenge: Practice with Incidence geometry

An *incidence structure* is a triple pair (P,L,\in) where *P* is a set (its elements are called *points*), *L* is a set (its elements are called "lines"), and \in is a relation between the sets *P*,*L*. We interpret the situation $p \in \ell$ as "the point *p* lies on the line ℓ " (is incident to it) and $p \notin \ell$ to be the reverse situation. We always assume that *P*,*L* are finite. Our goal is to prove

THEOREM (De Bruin–Erdős). Suppose that for any two distinct points p, p' there is a unique line ℓ such that $p \in \ell$ and $p' \in \ell$, and that not all points are on the same line. Then there are at least as many lines as points.

- *7. Let (P,L,\in) be an incidence structure which satisfies the axiom: "any two distinct points are incident to a unique line".
 - (a) Suppose that for some point p there is only one line containing p. Show that this line contains all points.
 - DEF Let $T : \mathbb{R}^P \to \mathbb{R}^L$, $S : \mathbb{R}^L \to \mathbb{R}^P$ be the maps $(Tf)(\ell) = \sum_{p \in \ell} f(p)$ (sum over points on ℓ) and $(Sg)(p) = \sum_{p \in \ell} g(\ell)$ (sum over lines containing p).
 - (b) Show that T, S are linear.
 - (c) Suppose that $P = \{p_i\}_{i=1}^n$ is finite. Show that the matrix of *ST* in the "standard basis" of \mathbb{R}^P (the *i*th basis vector is the function which is 1 at p_i , zero elsewhere) is $J_n + \text{diag}(d_1 1, \dots, d_n 1)$ where J_n is the all-ones matrix and d_i is the number of lines through p_i .
 - (d) Suppose that not all points are on the same line. Show that det(ST) > 0.
 - (e) Prove the Theorem.

- 8. Suppose that we add the axiom "every two distinct lines intersect at exactly one point".
 - (a) Show that in this case exchanging the role of points and lines (and the adjusting the relation appropriately) gives a new incidence structure (the "dual one") which also satisfies both the axiom of problem 7 and the axiom we just introduced.
 - (b) Conclude that with the extra axiom there only three possibilities: (1) there is exactly one line and it contains all the points; (2) there is exactly one point and it lies on all lines; (3) there are as many lines as points

Supplementary problem: Quadratic extensions in general

- A (Constructing quadratic fields) Let *F* be a field, $d \in F$ such that $x^2 = d$ has no solutions in *F*.
 - (a) Show that the set of matrices $E = \left\{ \begin{pmatrix} a & b \\ db & a \end{pmatrix} \mid a, b \in F \right\}$ is a two-dimensional *F*-subspace of

 $M_2(F)$ with basis 1, ε , where $\varepsilon = \begin{pmatrix} 1 \\ d \end{pmatrix}$ satisfies $\varepsilon^2 = d$.

- (b) Show that E is also closed under matrix multiplication and transpose.
- (c) Show that the map $\sigma: E \to E$ given by $\sigma(x) = x^t$ satisfies $\sigma(x+y) = \sigma(x) + \sigma(y)$, $\sigma(xy) = \sigma(x) + \sigma(y)$. $\sigma(x)\sigma(y), \sigma(a+b\varepsilon) = a-b\varepsilon$ for all $x, y \in E, a, b \in F$.
- (d) Show that the norm $Nz = z\sigma(z)$ satisfies $Nz \in F$ for all $z \in E$, $Nz \neq 0$ if $z \neq 0$, N(zw) = NzNw.
- (e) Conclud that *E* is a field.
- B. (Uniqueness) Let E' be a field containing F which is two-dimensional over F.
 - (a) Suppose E' is spanned over F by elements 1, ε with $\varepsilon^2 = d$. Let $z = a + b\sqrt{d} \in E'$ be any element and let $M_z: E' \to E'$ be the map of multiplication by z. Show that M_z is F-linear and that its matrix in the basis $\{1, \varepsilon\}$ is $\begin{pmatrix} a & b \\ db & a \end{pmatrix}$. (b) Show that *E* always has a basis of the form $\{1, \delta\}$ with $\delta \notin F$. Show that if char $F \neq 2$ there is
 - $\varepsilon = a + b\delta$ such that $\varepsilon^2 \in F$.
 - (c) Show that $E = F(\sqrt{d})$ and $E' = F(\sqrt{d'})$ are isomorphic as fields iff $\frac{d}{d'}$ is a square in *F*.