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Lior Silberman’s Math 223: Problem Set 9 (due 22/3/2021)

Hint for 1,2,3: if you aren’t sure try what happens with small matrices (2× 2,3× 3,4× 4,5× 5)
before tackling the general case.

Three determinants
1. Fix numbers a,b and let Hn be the matrix with entries ti j so that for all i, tii = a, ti,(i−1) = ti,(i+1) = b

and ti j = 0 otherwise. Let hn = detHn.
(a) For n≥ 1 show that hn+2 = ahn+1−b2hn.
(b) Using the method of problem 5 below solve the recursion in the case a = 5, b = 2 and find a

closed-form expression for hn.

2. Let Hn(d1, · · · ,dn) be the matrix Jn+diag(d1, . . . ,dn) where Jn is the all-ones matrix and let hn(d1, · · · ,dn)=
det [Hn(d1, · · · ,dn)].
(a) Show that hn(0,d2, . . . ,dn) = ∏

n
j=2 d j. (Hint: subtract the second row from the first)

(b) Suppose that n≥ 2. Show that hn(d1,d2, . . . ,dn) = d1hn−1(d2, . . . ,dn)+d2hn−1(0,d3, . . . ,dn).
(c) Suppose that all the di 6= 0 and that n≥ 2. Show that hn(d1,...,dn)

∏
n
j=1 d j

= hn−1(d2,...,dn)
∏

n
j=2 d j

+ 1
d1

.

(d) Show that h2(d1,d2)
d1d2

= 1
d1
+ 1

d2
+1, and thus that hn(d1,...,dn)

∏
n
j=1 d j

= ∑
n
j=1

1
d j
+1.

CONCLUSION hn(d1, . . . ,dn) =
(

∑
n
j=1

1
d j
+1
)(

∏
n
j=1 d j

)
.

3. (The “Vandermonde determinant”) Let xi be variables and let Vn(x1, . . . ,xn) be the n×n matrix with
entries vi j = x j−1

i . We show that detVn = ∏
n
i=2 ∏

i−1
j=1
(
xi− x j

)
.

(a) Show that detVn is a polynomial in x1, . . . ,xn of total degree 0+1+2+3+ · · ·+(n−1) = n(n−1)
2 .

(b) Show that detVn vanishes whenver xi = x j (which leads you to suspect that xi− x j divides the
polynomial).

RMK Note that ∏
n
i=2 ∏

i−1
j=1
(
xi− x j

)
is a polynomial of total degree n(n−1)

2 . It follows from (a) and the
theory of polynomial rings over integral domains that ∏

n
i=2 ∏

i−1
j=1
(
xi− x j

)
actually does divide

the determinant, and comparing degrees of the two it follows that the quotient has degree zero,
that is that for some constant cn ∈ Z, detVn = cn ∏

n
i=2 ∏

i
j=1
(
xi− x j

)
.

SUPP Examining the coefficient of x0
1x1

2x2
3 · · ·xn−1

n show that cn = 1.
(d) Let Vn+1(x1, . . . ,xn+1) be the matrix described above, and let Wn+1 be the matrix obtained by

(i) Subtracting the first row from each row; and then
(ii) For j descending from n+1 to 2, subtracting from the jth column a multiple of the ( j−1)st

so as to make the top entry in the column zero.
Let

(
wi j
)n+1

i, j=1 be the entries of Wn+1. Show that w11 = 1 that w1 j = wi1 = 0 if i, j 6= 1 and that
wi j = (xi− x1)vi, j−1 if i, j ≥ 2.

(e) Show that detVn+1 =
[
∏

n+1
i=2 (xi− x1)

]
· [detVn(x2, . . . ,xn+1)].

(f) Check that detV1 = 1 and prove the main claim by induction.

SUPP (Polynomial interpolation) Let {(xi,yi)}k
i=1 ⊂R2 be points in the plane with distinct xi. Show that

there exists a unique polynomial p ∈ R[x]<k such that p(xi) = yi.
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Linear recurrences
4. Let T ∈ End(V ) and let v ∈V satisfy T v = λv.

(a) Show that T nv = λ nv for all n≥ 0.
(b) Suppose that T is invertible and v 6= 0. Show that λ 6= 0 and that T−nv = λ−nv.
(c) Let p ∈ R[x] be a polynomial of degree n. Show that p(T )v = p(λ )v, where p(T ) is the linear

map defined in the supplement to PS6.

5. A sequence F ∈ CN satisfies a recursion relation of degree k if we have coefficients c0, . . . ,ck−1 such
that Fn+k = ∑

k−1
i=0 ciFn+i for all n ≥ 0. In that case let p(x) = xk−∑

k−1
i=0 cixi be the characteristic

polynomial of the recursion relation.
(a) Explain why we generally assume c0 6= 0.
(b) Show that F satisfies the recursion relation iff p(L)F = 0, were L ∈ End(R∞) is the left shift.
(c) Show that Ker(p(L)) is k-dimensional, and that any F ∈Ker(p(L)) is determined by (F0,F1, . . . ,Fk−1).
(d) Suppose that r is a root of p(x). Show that the sequence (rn)n≥0 ∈ Ker(p(L)) and that it is

non-zero.
FACT A set of (non-zero) eigenvectors corresponding to distinct eigenvalues is linearly independent.
ASSUME for the rest of the problem that p(x) has k distinct roots {ri}k

i=1.
(e) Find a basis for Ker(p(L)).
(f) Let (F0,F1, . . . ,Fk−1) be any numbers. Show that the system of k equations ∑

k−1
i=0 Air

j
i = Fj (1≤

j ≤ k) in the unknowns Ai has a unique solution. (Hint: problem 3)

6. Practice with complex numbers
(a) Let w = a+bi be a non-zero complex number. Show that there are two complex solutions to the

equation z2 = w. (Hint: write z = x+yi and get a system of two equations in the unknowns x,y).
(b) Let a,b,c ∈ C with a 6= 0. Show that the polynomial az2 +bz+ c ∈ C[z] factors as a product of

linear polynomials. (Hint: use the quadratic formula)

Challenge: Practice with Incidence geometry
An incidence structure is a triple pair (P,L,∈) where P is a set (its elements are called points), L is a

set (its elements are called “lines”), and ∈ is a relation between the sets P,L. We interpret the situation
p ∈ ` as “the point p lies on the line `” (is incident to it) and p /∈ ` to be the reverse sitaution. We always
assume that P,L are finite. Our goal is to prove

THEOREM (De Bruin–Erdős). Suppose that for any two distinct points p, p′ there is a unique line `
such that p ∈ ` and p′ ∈ `, and that not all points are on the same line. Then there are at least as many
lines as points.

*7. Let (P,L,∈) be an incidence structure which satisfies the axiom: “any two distinct points are incident
to a unique line”.
(a) Suppose that for some point p there is only one line containing p. Show that this line contains

all points.
DEF Let T : RP→ RL, S : RL→ RP be the maps (T f )(`) = ∑p∈` f (p) (sum over points on `) and

(Sg)(p) = ∑p∈` g(`) (sum over lines containing p).
(b) Show that T,S are linear.
(c) Suppose that P = {pi}n

i=1 is finite. Show that the matrix of ST in the “standard basis” of RP (the
ith basis vector is the function which is 1 at pi, zero elsewhere) is Jn + diag(d1− 1, . . . ,dn− 1)
where Jn is the all-ones matrix and di is the number of lines through pi.

(d) Suppose that not all points are on the same line. Show that det(ST )> 0.
(e) Prove the Theorem.
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8. Suppose that we add the axiom “every two distinct lines intersect at exactly one point”.
(a) Show that in this case exchanging the role of points and lines (and the adjusting the relation

appropriately) gives a new incidence structure (the “dual one”) which also satisfies both the
axiom of problem 7 and the axiom we just introduced.

(b) Conclude that with the extra axiom there only three possibilities: (1) there is exactly one line
and it contains all the points; (2) there is exactly one point and it lies on all lines; (3) there are as
many lines as points

Supplementary problem: Quadratic extensions in general
A (Constructing quadratic fields) Let F be a field, d ∈ F such that x2 = d has no solutions in F .

(a) Show that the set of matrices E =

{(
a b

db a

)
| a,b ∈ F

}
is a two-dimensional F-subspace of

M2(F) with basis 1,ε , where ε =

(
1

d

)
satisfies ε2 = d.

(b) Show that E is also closed under matrix multiplication and transpose.
(c) Show that the map σ : E → E given by σ(x) = xt satisfies σ(x+ y) = σ(x)+σ(y), σ(xy) =

σ(x)σ(y), σ(a+bε) = a−bε for all x,y ∈ E, a,b ∈ F .
(d) Show that the norm Nz = zσ(z) satisfies Nz ∈ F for all z ∈ E, Nz 6= 0 if z 6= 0, N(zw) = NzNw.
(e) Conclud that E is a field.

B. (Uniqueness) Let E ′ be a field containing F which is two-dimensional over F .
(a) Suppose E ′ is spanned over F by elements 1,ε with ε2 = d. Let z = a+ b

√
d ∈ E ′ be any

element and let Mz : E ′→ E ′ be the map of multiplication by z. Show that Mz is F-linear and

that its matrix in the basis {1,ε} is
(

a b
db a

)
.

(b) Show that E always has a basis of the form {1,δ} with δ /∈ F . Show that if charF 6= 2 there is
ε = a+bδ such that ε2 ∈ F .

(c) Show that E = F(
√

d) and E ′ = F(
√

d′) are isomorphic as fields iff d
d′ is a square in F .


