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Lior Silberman’s Math 223: Practice Problem Set 8

Practice problems
Section 4.1, Problems 1-8.
Section 4.2, Problems 1-23 (don’t do all of them!)

1. Let V be a two-dimensional vector space, A an area form on V . Let T ∈ End(V ) be linear. We
know that the function A′(u,v) = A(T u,T v) is also an area form, and in fact that there is c such that
for all u,v ∈ V , A′(u,v) = cA(u,v). We then defined c = detT . Let {v1,v2} be a basis of V and

let B =

(
b11 b12
b21 b22

)
be the matrix of T with respect to this basis. Calculate A′(v1,v2) in terms of

A(v1,v2) and conclude that detT = detB (use the definition of detB as in the textbook).

2. (Transpose 1) For a matrix A ∈ Mn,m(R) the transpose of A is the matrix At ∈ Mm,n(R) such that
(At)i j = A ji.
(a) The map A 7→ At is a linear map, and (At)t = A.
(b) Suppose that the product AB makes sense. Then (AB)t = BtAt .

3. (Elementary matrices)
(a) Check that if i 6= j then det(In + cE i j) = 1.
(b) Show that detdiag(a1, . . . ,an) = ∏

n
i=1 ai = a1a2 · · ·an

(c) Conclude that if E is one of the matrices from (a),(b) them det(At) = detA, where (At)i j = A ji.

4. (Transpose 2) Let A ∈Mn(R). Show that detAt = detA.
Hint: prove the theorem directly for matrices in reduced row echelon form, and then use the structure
theorem and problem 3 for the general case.

5. (Vandermonde I) Calculate the following determinants: V2(x1,x2)=

∣∣∣∣1 x1
1 x2

∣∣∣∣, V3(x1,x2,x3)=

∣∣∣∣∣∣
1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

∣∣∣∣∣∣ .
PRAC Can you guess a formula for Vn(x1, . . . ,xn) the determinat of the matrix A such that Ai j = x j−1

i ?

Challenge problem – the Fifteen puzzle
6. The “fifteen puzzle” is played on a n×n grid. The puzzle consists of n2−1 sliders, labelled with the

numbers between 1 through n2−1, placed on distinct grid points, leaving one grid point empty. We
will call such a placement a configuation of the puzzle. A legal move consists of sliding one of the
sliders vertically or horizontally into the empty position. For the purposes of a mathematical descrip-
tion we will replace the empty position with an additional slider marked “n2”, so that a configuation
consists of a matrix C ∈Mn(R) with the entries being 1,2,3, · · · ,n2 in some order, and legal moves
consists of exchanging the token marked “n2” with one of its neighbours.
DEF To go through the grid points in “natural order” means to go through the first row in order left-

to-right, then the second row left-to-right and so on. We say a grid position occurs “later” than
another if it will be checked later when going through the grid in order. Define the number of
crossings of a configuation to be the number of pairs of grid points such that the number written
in the later position of the two is smaller than the number written in the earlier one. Now define
the parity ε(C) of a configuration to be +1 if there is an even number of crossings, −1 if there is
an odd one. Define the total parity to be the number δ (C) = ε(C)× (−1)i+ j where (i, j) are the
coordinates of the position marked n2.
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EXAMPLE (n = 3) Let C =

2 1 5
9 8 3
4 6 7

. Then the legal moves are to exchange the 9 with the 2,8 or

4, the crossings are (in terms of the numbers written in the grid points, not in term of positions)
2→ 1, 5→ 3, 5→ 4, 9→ 8, 9→ 3, 9→ 4, 9→ 6, 9→ 7, 8→ 3, 8→ 4, 8→ 6, 8→ 7, the parity
is (−1)12 = 1 and the total parity is (−1)10(−1)2+1 =−1 since the 9 is in position 2,1.

(**a) Let C,C′ be two positions connected by a single legal move. Show that ε(C) = −ε(C′) and
that δ (C) = δ (C′).

(b) Let C,C′ be two positions such that we can go from C to C′ by m ≥ 0 legal moves. Show that
δ (C) = δ (C′).

(c) (Negative solution to the Fifteen Puzzle) Show that there is no sequence of legal moves that starts

in the configuation


1 2 3 4
5 6 7 8
9 10 11 12

13 15 14 E

 and ends in the configuation


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 E

. Here

we denoted the empty position E rather than 16.

Supplement 1: Complex numbers

A. Let C=

{(
a b
−b a

)
| a,b ∈ R

}
⊂M2(R). We will denote elements of C by lower-case letters like

z,w.
(a) Show that C is a subspace of M2(R). Conclude, in particular, that addition in C satisfies all the

usual axioms.
(b) Show that C is closed under multiplication of matrices, that I2 ∈ C and that zw = wz for any

z,w ∈ C. It follows that multiplication in C is associative, commutative, has an identity, and is
distributive over addition.

(c) Use PS5 problem 3 to show that every non-zero z ∈ C is invertible and derive a formula for the
inverse.

DEF A set equipped with an addition and a multiplication operations which are commutative, asso-
ciative, and have neutral elements, satisfying the distributive law and such tha every elemenent
has an additive inverse, and every non-zero element has a multiplicative inverse, is called a field.

RMK The field C constructed above contains a copy of R – indeed by PS7 problem 3 (practice part)

the identification a↔
(

a
a

)
respects addition and multiplication of real numbers; we do

this from now on. [In fact, we already agreed to identify the number a with the linear map of
multiplication by a].

(d) Let i =
(

0 1
−1 0

)
∈ C. Show that i2 = −1 (note that 1 =

(
1 0
0 1

)
) and that that every

elememt of C can be uniquely written in the form a+ bi for some a,b ∈ R (hint: your answer
should use the word “basis”)

DEF From now on if asked to calculate a complex number write it in the form a+bi. Do NOT use
the cumbersome specific realization of parts (a)-(d).

RMK Really try to forget the specific construction of parts (a)-(d) and only work in terms of the
basis {1, i}. In particular, note that (a+bi)(c+di) = (ac−bd)+(ad +bc)i – you showed this
for (b), but it also follows from the applying the distributive law and other laws of arithmetic and
at some point using i2 =−1.

(e) Calculate (1+2i)+ (3+7i), (1+2i) ·(3+7i), 7+3i
1+2i (hint: division means multiplication by the

inverse!)
EXAMPLE (5−2i) ·(1+ i)= 5 ·(1+ i)+(−2i)(1+ i)= 5+5i−2i−2i · i= 5+3i−2 ·(−1)= 7+3i.
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B. (Inverting complex numbers using the norm)
DEF The complex conjugate of z ∈ C is the number z̄ represented by the matrix zt .
(a) Use problem 3 to show z+w = z+w and zw = zw. Also check that a+bi = a−bi and use this

to give an alternate proof of the claims.
(b) Show that zz̄ is a non-negative real for all z ∈ C (again we identify a ∈ R with the matrix aI2),

and that zz̄ = 0 iff z = 0. Conclude z 6= 0 then z · z̄
zz̄ = 1, a variant of the proof of A(c).

DEF The norm of zz̄ is defined to be |z| def
=
√

zz̄.
(c) Show that |zw|= |z| |w|. (Hint: this is easy using part (a) of this problem).
(d) Show that z

w = zw̄
|w|2

.
C. (Linear algebra over the complex numbers)

DEF A complex vector space is a triple (V,+, ·) satisfying the usual axioms except that multiplica-
tion is by complex rather than real numbers.

DEF CX is the space of C-valued functions on the set X . This is a complex vector space under
pointwise operations (review the definition of RX ). In particular, Cn is the space of n-tuples.

FACT Everything we proved about real vector spaces is true for complex vector spaces. For example,
the standard basis {ek}

n
k=1 ⊂ Cn is still a basis. We use dimCV to denote the dimension of a

complex vector space, and when needed dimRV to denote the dimension of a real vector space.

(a) In the vector space C2 calculate (1+ 2i) ·
(

i
3−7i

)
. Show that

{(
1
i

)
,

(
1
−i

)}
form a

basis for C2.

(b) Show that
{(

1
0

)
,

(
i
0

)
,

(
0
1

)
,

(
0
i

)}
⊂ C2 are linearly independent over R [that is: if

a linear combination with real coefficients is zero, then the coefficients are zero].

RMK Since
(

a+bi
c+di

)
= a

(
1
0

)
+b
(

i
0

)
+ c
(

0
1

)
+d
(

0
i

)
this set is also spanning,

(c) Solve the following system of linear equations over C:
5x+ iy+(1+ i)z = 1
2y+ iz = 2
−ix+(3− i)y = i

More Supplementary problems

D. (Inefficiency of minor expansion) Suppose that the “minor expansion along first row” algorithm for
evaluating determinants requires Tn multiplications to evaluate an n×n determinant.
(a) Show that T1 = 0 and that Tn+1 = (n+1)(Tn +1).
(b) Show that for n≥ 2 one has Tn = n!

(
∑

n−1
j=1

1
j!

)
(c) Conclude that n!≤ Tn ≤ e ·n! for all n≥ 2.

E. Let X be a set. A permutation of X is a function σ : X → X which injective and surjective. The set
of permutations of X is denoted SX .
(a) Which of the following are permutations: (i) σ(n) = n+ 1 on N; (ii) σ(n) = n+ 1 on Z; (iii)

σ(n) = 2n on Z; (iv) σ(n) = 2n on Q ?
(b) (Group property) Suppose that σ ,τ ∈ SX . Show IdX ,σ ◦ τ,σ−1 ∈ SX ,
DEF When X = {1,2, · · · ,n}we usually write Sn rather than S{1,··· ,n}, and write individual elements

via their graphs like so:
(

1 2 3 4
4 1 3 2

)
for the map such that σ(1) = 4, σ(2) = 1, σ(3) = 3,

σ(4) = 2.
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(c) Calculate
(

1 2 3 4
4 1 3 2

)
◦
(

1 2 3 4
4 1 3 2

)
,
(

1 2 3 4
4 1 3 2

)
◦
(

1 2 3 4
3 2 4 1

)
(hint: plug in 1,2,3,4

to the funciton on the right of the ◦, and then the output of that to the function on the left).
DEF Define the crossing number of σ ∈ Sn to be the number c(σ)

def
= {(i, j) | 1≤ i < j ≤ n, σ(i)> σ( j)},

and the parity (or sign) of σ to be the number (−1)σ def
= (−1)c(σ)

(d) Calculate the crossing number and parity of the permutations appearing in (c).


