Lior Silberman's Math 223: Problem Set 5 (due 22/2/2021)

Calculations with matrices

1. Let
$$A = \begin{pmatrix} -2 & 3 \\ 5 & -7 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & 9 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Calculate all

possible products among pairs of A, B, C, D (don't forget that $A^2 = AA$ is also such a product and that XY, YX are different products if both make sense).

PRAC The $n \times n$ identity matrix is the matrix $I_n \in M_n(\mathbb{R})$ with entries: $(I_n)_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$. Show that

 $I_n v = v$ for all $v \in \mathbb{R}^n$.

2. Let
$$A \in M_{m,n}(\mathbb{R})$$
. Show that $AI_n = I_m A = A$. (Hint)

PRAC

- (a) Let $A \in M_{n,m}(\mathbb{R})$, $B \in M_{m,p}(\mathbb{R})$. Show that the *j*th column of AB is given by the product $A\underline{v}$ where *v* is the *j*th column of *B*.
- (b) Let $A \in M_{n,m}(\mathbb{R})$, $B \in M_{m,p}(\mathbb{R})$. Show that the *j*th column of *AB* is a linear combination of all the columns of A with the coefficients being the *j*th column of B.
- 3. Let $A, B \in M_n(\mathbb{R})$ be square matrices. We say A, B commute if AB = BA. WE say A is scalar if $A = zI_n$ for some $z \in \mathbb{R}$. The *centre* of $M_n(\mathbb{R})$ is the set $Z = \{A \in M_n(\mathbb{R}) \mid \forall B \in M_n(\mathbb{R}) : AB = BA\}$ of matrices that commute with all other matrices.

PRAC Check that the action of zI_n on vectors is by multiplication by the scalar z.

- (a) Show that $Z \subset M_n(\mathbb{R})$ is a subspace.
- (b) Show that the centre of $M_n(\mathbb{R})$ consists of scalar matrices: $Z = \text{Span}_{\mathbb{R}}(I_n)$.
- 4. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ and suppose that $ad bc \neq 0$. (a) Find a matrix $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ such that $AB = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Show that $BA = I_2$ as well.
 - (*b) ("Uniqueness of the inverse") Suppose that $AC = I_2$. Show that $C = B_1$.
- *5. Find a matrix $N \in M_2(\mathbb{R})$ such that $N^2 = 0$ but $N \neq 0$.
- 6. ("Group homomorphisms") (a) Let R_{α} be the matrix $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ ("rotation in the plane by angle α "). Show that $R_{\alpha}R_{\beta}=R_{\alpha+\beta}.$ (b) Let n(x) be the matrix $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ ("shear in the plane by x"). Show that n(x)n(y) = n(x+y).

An application to graph theory

*7. Let V be a vector space. A linear map $T: V \to V$ is said to be *bipartite* if there are subspaces $W_1, W_2 \subset W_1$ V such that $V = W_1 \oplus W_2$ (internal direct sum). and such that $T(W_1) \subset W_2$ and $T(W_2) \subset W_1$. Let T be bipartite with respect to the decomposition $V = W_1 \oplus W_2$. Show that dim Ker $T \ge |\dim W_1 - \dim W_2|$.

、

Hint for 2: interpret the compositions as linear maps, and use the practice problem. Hint for 3a: use the practice problem and a previous problem set.

Supplementary problems

- A. Show by hand that for any three matrices A, B, C with compatible dimensions, (AB)C = A(BC).
- B. (Every vector space is \mathbb{R}^n) Let V be a vector space with basis $B = \{\underline{v}_i\}_{i \in I}$ (I may be infinite).
 - (a) Let $\Phi: \mathbb{R}^{\oplus I} \to V$ be the map $\Phi(f) = \sum_{i \in I} f_i \underline{\nu}_i = \sum_{f_i \neq 0} f_i \underline{\nu}_i$ [recall that we admit infinite sums where only finitely many summands are non zero]. Show that Φ is a an isomorphism of vector spaces.
 - RMK The inverse map $\Psi: V \to \mathbb{R}^{\oplus I}$ is called the *coordinate map* (in the ordered basis *B*)
 - (b) Construct an isomorphism $V^* \to \mathbb{R}^I$.
 - (c) Let W be another space with basis C = {w_j}_{j∈J}. Construct an injective linear map Hom(V,W) → M_{I×J}(ℝ) = ℝ^{I×J} and show that its image is the set of matrices having at most finitely many non-zero entries in each column.