Lior Silberman's Math 223: Problem Set 4 (due 8/2/2021)

Practice problems (recommended, but do not submit)

Section 2.1, Problems 1-3,5,9,10-12,28-29 Section 2.2, Problems 1-3.

Calculations with linear maps

1. Let $T: U \to V$ be a linear map, and let $S \subset U$ be a spanning set. Show that $\{Ts \mid s \in S\}$ spans Im T.

- RMK This is one starting point for mixing a case T. 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 x_2 \\ 2x_1 \end{pmatrix}$.
 - (a) Find bases for KerT, ImT and check that the dimension formula holds.
 - (b) Find the matrix for *T* with respect to the bases $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ of \mathbb{R}^2 and $\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ of \mathbb{R}^3 .

3. Let
$$T : \mathbb{R}^5 \to \mathbb{R}^3$$
 be the linear map $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 \\ x_1 - x_2 + x_3 - x_5 \\ -3x_1 - x_3 + x_5 \end{pmatrix}$.

- (a) Find bases for Ker T, Im T (use problem 1) and check that the dimension formula holds.
- (b) Find the matrix for T with respect to the standard bases of \mathbb{R}^5 , \mathbb{R}^3 .

(c) Find the matrix for *T* with respect to the standard basis of \mathbb{R}^5 and the basis $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$ of \mathbb{R}^3 .

- 4. Let $D: \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the differentiation map.
 - (a) Find Ker D and its dimension.
 - (b) Find Im*D*.

Fix a number $a \neq 0$ and let $T : \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the map $D + Z_a$ (that is, $Tp = \frac{dp}{dx} + a \cdot p$). (c) Show that T maps the basis of monomials to a set of n + 1 polynomials of distinct degrees.

- (*d) Show that Im $T = \mathbb{R}[x]^{\leq n}$.
- 5. Write $C^{\infty}(\mathbb{R})$ for the space of infinitely differentiable functions (i.e. the functions for which derivatives of all orders exist).

PRAC For a function $a \in C^{\infty}(\mathbb{R})$ write M_a for the operator of multiplication by a: $(M_a f)(x) =$ a(x)f(x). Show that $M_a: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is a linear map.

- DEF The *commutator* of two linear maps $A, B: V \to V$ is the map [A, B] = AB BA (in other words [A,B]v = A(B(v)) - B(A(v))).
- (a) Show that [A, B] is a linear map $V \to V$.
- (b) Let $a \in C^{\infty}(\mathbb{R})$. Find a function *b* so that $[D, M_a] = M_b$ as linear maps on $C^{\infty}(\mathbb{R})$.

Linear dependence of functions

- 6. Let X be a set, and let $\{f_i\}_{i=1}^n \subset \mathbb{R}^X$ be some *n* functions. Let $\{x_j\}_{j=1}^m \subset X$ be *m* points of X.
 - (a) Define a map $E : \mathbb{R}^n \to \mathbb{R}^m$ by setting $(E\underline{a})_j = \sum_{i=1}^n a_i f_i(x_j)$ for $\underline{a} \in \mathbb{R}^n$ and $1 \le j \le m$. Show that E is linear.
 - (b) Suppose that m < n. Show that dim KerE > 0. Conclude that if m < n there exist $\{a_i\}_{i=1}^n$ not all zero such that the function $\sum_{i=1}^n a_i f_i$ vanishes at all the points $\{x_j\}_{j=1}^m$.

Surjective and injective maps; Invertibility

DEFINITION. Let $T: U \to V$ be a linear map. We say that T is *injective* (a *monomorphism*) if $T\underline{u} = T\underline{u}'$ implies $\underline{u} = \underline{u}'$ and *surjective* (an *epimorphism*) if $\operatorname{Im} T = V$.

7. Show that *T* is injective if and only if Ker $T = \{\underline{0}\}$. (Hint: to compare two vectors consider their difference)

DEFINITION. If a linear map $T: U \to V$ is surjective and injective we say it is an *isomorphism* (of vector spaces). We say that U, V are isomorphic if there is an isomorphism between them.

- 8. Suppose that $T: U \to V$ is an isomorphism of vector spaces, and define a function $T^{-1}: V \to U$ by $T^{-1}\underline{v}$ being that vector \underline{u} such that $T\underline{u} = \underline{v}$.
 - (a) Explain why \underline{u} exists and why it is unique (that is, review the definitions of surjective and injective)
 - (*b) Show that T^{-1} is a linear function.