Lior Silberman's Math 223: Problem Set 3 (due 1/2/2021)

Practice problems (recommended, but do not submit)

Section 1.6, Problems 1 (except (g)), 2-5, 7, 11, 12, 22*, 24*.

Bases and dimension

- 1. (§1.6 E8)Let $W = \{ \underline{x} \in \mathbb{R}^5 \mid \sum_{i=1}^5 x_i = 0 \}$ be the set of vectors in \mathbb{R}^5 whose co-ordinates sum to zero. It is a subspace (but you don't have to check this). The following 8 vectors span W (you don't have to check that either). Find a subset of them which forms a basis for W. $\underline{u}_1 = (2, -3, 4, -5, 2)$, $\underline{u}_2 = (-6, 9, -12, 15, -6), \\ \underline{u}_3 = (3, -2, 7, -9, 1), \\ \underline{u}_4 = (2, -8, 2, -2, 6), \\ \underline{u}_5 = (-1, 1, 2, 1, -3), \\ \underline{u}_6 = (-1, 1, 2, 1, -3), \\ \underline{u}_6 = (-1, 1, 2, 1, -3), \\ \underline{u}_8 = (-1, 1, 2, 1, -3), \\ \underline$ $(0, -3, -18, 9, 12), \underline{u}_7 = (1, 0, -2, 3, -2), \underline{u}_8 = (2, -1, 1, -9, 7).$
- 2. Find a basis for the subspace $\{\underline{x} \in \mathbb{R}^4 \mid x_1 + 3x_2 x_3 = 0\}$ of \mathbb{R}^4 . What is the dimension?
- 3. Let $U = \{ p \in \mathbb{R}[x] \le n \mid p(-x) = p(x) \}$. Find a basis for U and determine its dimension.
- *4. Let $\mathbb{R}(x)$ be the space of functions of the form $\frac{f}{g}$ where $f, g \in \mathbb{R}[x]$ are polynomials. $\mathbb{R}(x)$ is called "the field of rational functions in one variable, and has the same relation to the ring of polynomials $\mathbb{R}[x]$ that the rational numbers \mathbb{Q} have to the ring of integers \mathbb{Z} . We will consider $\mathbb{R}(x)$ as a real vector space.
 - (a) Show that $\frac{1}{1-x} \in \mathbb{R}(x)$ is linearly independent of the set $\{x^k\}_{k=0}^{\infty} \subset \mathbb{R}(x)$.
 - RMK It's true that $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ holds on the interval (-1,1), but don't forget that the summation symbol on the left does not stand for repeated addition. Rather, it stands for a kind of limit.
 - (b) Show that the subset $\left\{\frac{1}{x-a}\right\}_{a\in\mathbb{R}}\subset\mathbb{R}(x)$ is linearly independent.
 - RMK The vector space $\mathbb{R}[x]$ has countable dimension, but by part (b) the dimension of $\mathbb{R}(x)$ as a real vector space is at least the cardinality of the continuum. In fact there is equality, because the cardinality of all of $\mathbb{R}(x)$ is that of the continuum.

Linear Functionals

Fix a vector space V. A *linear functional* on V is a map $\varphi: V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $u, v \in V, \ \varphi(av + bu) = a\varphi(v) + b\varphi(u).$ Let $V^* \stackrel{\text{def}}{=} \{\varphi \colon V \to \mathbb{R} \mid \varphi \text{ is a linear functional} \}$ be the set of linear functionals on V (called vector space *dual* to V, in short the *dual space*).

- (The basic example) 5.
 - (a) Show that $\varphi\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = x 2y + 3z$ defines a linear functional on \mathbb{R}^3 .

(b) Let φ be a linear functional on \mathbb{R}^2 . Show that $\varphi\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = x \cdot \varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) + y \cdot \varphi\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$, thus that every linear functional on \mathbb{R}^2 is of the form $\varphi\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = ax + by$ for some $a, b \in \mathbb{R}$.

SUPP Construct an identification of $(\mathbb{R}^n)^*$ with \mathbb{R}^n .

- Show that V^* is a subspace of \mathbb{R}^V , hence a vector space. 6.
- 7. Let *V* be a vector space and let $\varphi \in V^*$ be non-zero.
 - (a) Show that Ker $\varphi \stackrel{\text{def}}{=} \{ v \in V \mid \varphi(v) = 0 \}$ is a subspace.
 - (*b) Show that there is $v \in V$ satisfying $\varphi(v) = 1$.
 - (**c) Let *B* be a basis of Ker φ , and let $v \in V$ be as in part (b). Show that $B \cup \{v\}$ is a basis of *V*.

A Linear Transformation

In this problem our choice of letters follows conventions from physics. Thus v will be a numerical parameter rather than a vector, and we write the coordinates of a vector in \mathbb{R}^2 as $\begin{pmatrix} x \\ t \end{pmatrix}$ rather than

 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

8. In the course of his researches on electromagnetism, Henri Poincaré wrote down the following map $L_v: \mathbb{R}^2 \to \mathbb{R}^2$ which he called the "Lorentz transformation":

$$L_{v}\left(\begin{array}{c}x\\t\end{array}\right)\stackrel{\text{def}}{=}\gamma_{v}\cdot\left(\begin{array}{c}x-vt\\t-vx\end{array}\right)$$

Here *v* is a real parameter such that |v| < 1 and γ_v is also a number, defined by $\gamma_v = (1 - v^2)^{-1/2}$.

- (a) Suppose v = 0.6 so that $\gamma_v = (1 0.6^2)^{-1/2} = 1.25$. Calculate $L_v \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $L_v \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $L_v \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Check that $L_v \begin{pmatrix} 2 \\ 3 \end{pmatrix} = L_v \begin{pmatrix} 3 \\ 2 \end{pmatrix} + L_v \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- (b) Show that L_v is a linear transform
- (c) ("Relativistic addition of velocities") Let $v, v' \in (-1, 1)$ be two parameters. Show that $L_v \circ L_{v'} =$ L_u for $u = \frac{v+v'}{1+vv'}$. It is a fact that if $v, v' \in (-1,1)$ then $\frac{v+v'}{1+vv'} \in (-1,1)$ as well. *Hint*: Start by showing $\gamma_{\nu} \gamma_{\nu'} = \frac{\gamma_u}{1 + w'}$.
- RMK If $g: A \to B$ and $f: B \to C$ are functions then $f \circ g$ denotes their *composition*, the function $f \circ g \colon A \to C$ such that $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

Supplementary problems

- A. Let *V* be a vector space and let $W_1, W_2 \subset V$ be finite-dimensional subspaces.
 - (a) Show that $\dim(W_1 + W_2) \leq \dim W_1 + \dim W_2$.
 - (**b) Show that $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$.
 - RMK Let *A*, *B* be finite sets. Then the "inclusion-exclusion" formula states $#A + #B = #(A \cup B) + #(A \cap B)$
- B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be disjoint from B and such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
 - (a) Show that $\{\underline{v}+W\}_{\underline{v}\in C}$ is a basis for the quotient vector space V/W (V/W is defined in the supplement to PS2).
 - (b) Show that $\dim W + \dim(V/W) = \dim V$.

The following problem requires some background in set theory.

- C. Let V be a vector space, and let B, C be a bases of V.
 - (a) Suppose one of B, C is finite, Show that the other is finite and that they have the same size.
 - We may therefore assume both *B*,*C* are finitely.
 - (b) For a finite subset $A \subset B$ show that $C \cap \text{Span}(A)$ is finite.
 - Let $\mathcal{F}_B, \mathcal{F}_C$ be the sets of finite subsets of B, C respectively, and let $f: \mathcal{F}_B \to \mathcal{F}_C$ be the function $f(A) = C \cap \text{Span}(A)$.
 - (c) Show that the image of f covers C.
 - (d) Show that the cardinality of the image of f is at least that of C.
 - (e) Show that $|B| \ge |C|$. Conclude that |B| = |C|, in other words that infinite-dimensional vector spaces also have well-defined dimensions.