Lior Silberman's Set Theory: Problem Set 6 on ordinals and cardinals

1. Let F be a field, and let V be a vector space over the field F. Let $B, B^{\prime} \subset V$ be F-bases. Show that $B \approx B^{\prime}$. (hint: compare B^{\prime} and the set of finite sequences of elements of B).

Definition. A Hilbert space is a real (or complex) vector space X equipped with a (hermitian, in the second case) inner product which is complete with respect to the associated Euclidean norm. An orthonormal system in X is a subset B so that for any $x, y \in B$ we have $\langle x, y\rangle=\delta_{x, y}$ (Kronecker delta). An orthonormal basis is an orthonormal system whose span is dense. The orthogonal complement of a subset $C \subset X$ is the set $C^{\perp}=\{y \in X \mid \forall x \in C:\langle x, y\rangle=0\}$. Recall the CauchySchwarz inequality: for all $x, y \in X$ we have

$$
|\langle x, y\rangle| \leq\|x\|\|y\|=\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2} .
$$

2. Let X be a Hilbert space
(a) Show that an orthonormal system in X is linearly independent.
(b) Let $C \subset X$. Show that $C^{\perp}=(\operatorname{Span} C)^{\perp}$ is a closed subspace of X.
(c) Let $B \subset X$. Show that $\operatorname{Span} B \subset X$ is dense iff $B^{\perp}=\{0\}$.
(d) (Bessel's inequality) Let $x \in X$ and let $F \subset X$ be a finite orthonormal system. Show that $\sum_{v \in F}|\langle v, x\rangle|^{2} \leq\|x\|^{2}$ (hint: let $\alpha_{v}=\langle v, x\rangle$ and show that $x-\sum_{v \in F} \alpha_{v} v \in F^{\perp}$).
(e) Let $B \subset X$ be an arbitrary orthonormal system and let $x \in X$. Show that $\{v \in B \mid\langle v, x\rangle \neq 0\}$ is countable.
(f) Let $B \subset X$ be an arbitrary orthonormal system and let $x \in X$. For finite $F \subset B$ let $x_{F}=$ $\sum_{v \in F} \alpha_{v} v$. Show that $\left\{x_{F}\right\}_{F}$ is a Cauchy sequence in the strong sense that, for any $\varepsilon>0$, there is a finite set F_{ε} such that if $F, F^{\prime} \supset F_{\varepsilon}$ then $\left\|x_{F}-x_{F^{\prime}}\right\| \leq \varepsilon$. Since X is complete it follows that $\sum_{v \in B} \alpha_{v} v$ converges (note that there are at most countably many non-zero terms in the sum!).
(g) Let $B \subset X$ be a complete orthonormal system and let $x \in X$. Show that $\sum_{v \in B}\langle v, x\rangle v=x$ (hint: show that $x-\sum_{v \in B}\langle v, x\rangle v \in B^{\perp}$).
(h) Let B^{\prime} be another complete orthonormal system in X. Show that $B \approx B^{\prime}$ (hint: you need to separate the finite-dimensional and infinite-dimensional cases).
3. Let $(A,<)$ be a linearly ordered set. Call an element $a \in A$ the successor of $b \in A$ (and write $a=b^{+}$) if a is the least element greater than b, that is if $b<a$ and there is no $c \in A$ such that $b<c<a$. Call $a \in A$ a limit element if $a=\sup \{b \in A \mid b<a\}$. Show that every element is either a successor or a limit element.
4. Let $(A,<)$ be a linearly ordered set. Show that the following are equivalent:
(i) A is well-ordered: every non-empty subset of A has a least element.
(ii) Transfinite induction 1 works on A : suppose $S \subset A$ has the property that if $t \in A$ has $\operatorname{seg} t \subset S$ then $t \in S$. Then $S=A$.
(iii) Transfinite induction 2 works on A : suppose $S \subset A$ has the propreties (1) if $a \in S$ then $a^{+} \in S(2)$ if $a \in A$ is a limit element and $\operatorname{seg} a \subset S$ then $a \in S$. Then $S=A$.
