Lior Silberman's Set Theory: Problem Set 5

Not everything requires choice

- 1. Let *A* be a set and suppose. $f: \omega \to A$ is surjective. Show that there is an injective function $f: A \to \omega$.
- 2. Prove (without the AC!) that for every finite set *A* if every $a \in A$ is non-empty there is $f : A \to \bigcup A$ with $f(a) \in a$ for all $a \in A$.

Cardinality and cardinal arithmetic

- 3. For $f: I \to \mathbb{R}_{\geq 0}$ define $\sum_{i \in I} f(i) = \sup \{ \sum_{j \in J} f(j) \mid J \subset I \text{ finite} \}$. Suppose $f(I) < \infty$. Show that $\{i \mid f(i) \neq 0\}$ is countable.
- 4. Let *A* be an infinite set.
 - (a) A *finite sequence* in A is a function $f: n \to A$ with $n \in \omega$. Show that there is a "set of all finite sequences in A".
 - (b) Show that the set of all finite sequences in *A* has the same cardinality as *A*.
 - (c) Review the proof that the set of algebraic numbers is countable.
- 5. For a set *A* let $S_A = \{f : A \to A \mid f \text{ is bijective}\}$ by the *symmetric group* of *A*. Show that if *A* is infinite we have $|S_A| = 2^{|A|}$ (in terms of cardinal numbers, this reads $\kappa! = 2^{\kappa}$).
- 6. Let $(A, <_A)$ and $(B, <_B)$ be two well-ordered sets. Show that exactly one of the following is true:
 - (1) There is a isomorphism of ordered sets $f: A \rightarrow B$.
 - (2) There is $a \in A$ so that $(B, <_B)$ is order-isomorphic to $(\text{seg } a, <_A)$.
 - (3) There is $b \in B$ so that $(A, <_A)$ is order-isomorphic to $(\text{seg } b, <_B)$.