Lior Silberman's Set Theory: Problem Set 5

Not everything requires choice

1. Let A be a set and suppose. $f: \omega \rightarrow A$ is surjective. Show that there is an injective function $f: A \rightarrow \omega$.
2. Prove (without the AC!) that for every finite set A if every $a \in A$ is non-empty there is $f: A \rightarrow$ $\cup A$ with $f(a) \in a$ for all $a \in A$.

Cardinality and cardinal arithmetic

3. For $f: I \rightarrow \mathbb{R}_{\geq 0}$ define $\sum_{i \in I} f(i)=\sup \left\{\sum_{j \in J} f(j) \mid J \subset I\right.$ finite $\}$. Suppose $f(I)<\infty$. Show that $\{i \mid f(i) \neq 0\}$ is countable.
4. Let A be an infinite set.
(a) A finite sequence in A is a function $f: n \rightarrow A$ with $n \in \omega$. Show that there is a "set of all finite sequences in A ".
(b) Show that the set of all finite sequences in A has the same cardinality as A.
(c) Review the proof that the set of algebraic numbers is countable.
5. For a set A let $S_{A}=\{f: A \rightarrow A \mid f$ is bijective $\}$ by the symmetric group of A. Show that if A is infinite we have $\left|S_{A}\right|=2^{|A|}$ (in terms of cardinal numbers, this reads $\kappa!=2^{\kappa}$).
6. Let $\left(A,<_{A}\right)$ and $\left(B,<_{B}\right)$ be two well-ordered sets. Show that exactly one of the following is true:
(1) There is a isomorphism of ordered sets $f: A \rightarrow B$.
(2) There is $a \in A$ so that $\left(B,<_{B}\right)$ is order-isomorphic to $\left(\operatorname{seg} a,<_{A}\right)$.
(3) There is $b \in B$ so that $\left(A,<_{A}\right)$ is order-isomorphic to $\left(\operatorname{seg} b,<_{B}\right)$.
