Lior Silberman's Set Theory: Problem set 4 on cardinality

- 1. Call a set *A Dedekind–infinite* if it is equinumerous with a proper subset, *Dedekind–finite* otherwise.
 - (a) Show that a set is Dedekind-finite iff its satisfies the pigeon-hole principle: every injection $A \rightarrow A$ is surjective.
 - (b) Show that a subset of a Dedekind–finite set is Dedekind–finite.
 - (c) Show that the union of two Dedekind-finite sets is Dedekind-finite.
 - (d) Show that the Cartesian product of two Dedekind-finite sets is Dedekind-finite.
 - HARD Suppose that there exists an infinite Dedekind–finite set. Show that there exists a Dedekind-finite set A so that every $a \in A$ is Dedekind–finite yet | JA is Dedekind–infinite.
- 2. Show that every subset of ω is either finite or equinumerous with ω (hint: for a set A define $f(a) = (A \cap a)$).
- 3. (Countability)
 - (a) Show that the set of finite subsets of ω is countable.
 - (b) Show that the set of algebraic numbers is countable.
- 4. Show that for any non-empty set *A*, there is no set *B* so that $x \in B$ iff $x \approx A$.
- 5. Suppose we have a one-to-one function $f: A \to B$. Show that there is a surjective function $g: B \to A$.