Lior Silberman's Set Theory: Problem set 2 on the relations and functions

- 1. Show that $A \times \bigcup \mathcal{B} = \bigcup \{A \times B \mid B \in \mathcal{B}\}$ (in particular, you need to show that $\{A \times B \mid B \in \mathcal{B}\}$ is a set!)
- 2. A relation *R* is *transitive* if $\forall x, y, z : xRy \land yRz \rightarrow xRz$.
 - (a) Show that the intersection of a set of transitive relations is a transitive relation.
 - (b) Is the union of a set of transitive relations transitive?
- 3. (Transitive closure) Let *R* be a relation on a set *A* (recall that this means that $\operatorname{fld} R \subset A$).
 - (a) Show that there is a smallest transitive relation containing R.
 - (b) Let $R^{(1)} = R$ and define recursively $R^{(n+1)} = R \circ R^{(n)}$. Show that $\bigcup_{n=1}^{\infty} R^{(n)}$ is a transitive relation, in fact the transitive relation of part (a).
 - RMK We'll later formalize the natural numbers and the notion of definitions by recursion and proof by induction. For now don't worry about those issues.
- 4. (Extension of functions) Let f, g be functions.
 - (a) Show that f = g iff Dom f = Dom g and $\forall x \in \text{Dom } f : f(x) = g(x)$.
 - (b) Show that $f \subset g$ iff Dom $f \subset$ Dom g and $\forall x \in$ Dom f : f(x) = g(x).
 - (c) Let \mathcal{F} be a *chain* of functions, that is a set of functions that that for all $f, g \in \mathcal{F}$ either $f \subset g$ or $g \subset f$. Show that $\bigcup \mathcal{F}$ is a function.
- 5. Show that for every set $A, A^{\emptyset} = \{\emptyset\}$. Show that for every nonempty set $A, \emptyset^A = \emptyset$.
- 6. For any set *X* construct a bijection $\mathcal{P}X \to \{0,1\}^X$ so which is a group isomorphism if we treat $\{0,1\}$ as the field with two elements.