1. Applying the MVT

Theorem. Let f be defined and continuous on $[a, b]$, differentiable on (a, b). Then there is c between a, b such that \(\frac{f(b) - f(a)}{b - a} = f'(c) \).

Equivalently, for any x there is c between a, x so that $f(x) = f(a) + f'(c)(x - a)$.

(1) Suppose $f'(x) = \frac{e^x}{x + \pi}$ for $0 \leq x \leq 2$. Give an upper bound for $f(2) - f(0)$.

(2) (Final, 2015) Show that $2x^2 - 3 + \sin x + \cos x = 0$ has at most two solutions.

(3) Suppose f satisfies the hypotheses of the MVT and that $f'(x) > 0$ for all $x \in (a, b)$. Show that \(\frac{f(b) - f(a)}{b - a} > 0 \), and hence that $f(b) > f(a)$.

\[\text{Date: 5/11/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.}\]
2. The shape of a the graph

(4) Let \(f \) be twice differentiable on \([a, b]\).

(a) Suppose first that \(f(a) = f(b) = 0 \) and that \(f \) is positive somewhere between \(a, b \). Show that there is \(c \) between \(a, b \) so that \(f''(c) < 0 \).

(b) Now let \(f(a), f(b) \) take any values, but suppose \(f''(x) > 0 \) on \((a, b)\). Let \(L : y = mx + n \) be the line through \((a, f(a)), (b, f(b))\). Applying part (a) to \(g(x) = f(x) - (mx + n) \) show that the graph of \(f \) lies below the line \(L \).

Definition. We say \(f \) is concave up (or “convex”) on an interval \([a, b]\) if its graph lies under the secant lines in this interval. This is true, for example, if \(f'' > 0 \) on \((a, b)\). We say \(f \) is concave down (or “concave”) on the interval if its graph lies below the scant lines, in particular when \(f'' < 0 \) on \((a, b)\). We say that \(f \) has an inflection point at \(x_0 \) if its second derivative changes sign there.