Math 100 - SOLUTIONS TO WORKSHEET 18 THE MVT AND CURVE SKETCHING

1. Applying the MVT

(1) Suppose $f^{\prime}(x)=\frac{e^{x}}{x+\pi}$ for $0 \leq x \leq 2$. Give an upper bound for $f(2)-f(0)$.

Solution: We are given that f is differentiable on the interval, so by the MVT there is $c \in(0,2)$ such that $\frac{f(2)-f(0)}{2-0}=f^{\prime}(c)$ and hence $f(2)-f(0)=2 f^{\prime}(c)$. Now $f^{\prime}(c)=\frac{e^{c}}{c+\pi}$. Since $c \leq 2$ we have $e^{c} \leq e^{2}$ and since $c \geq 0$ we have $\frac{1}{c+\pi} \leq \frac{1}{\pi}$ so $f^{\prime}(c) \leq \frac{e^{2}}{\pi}$ and $f(2)-f(0) \leq \frac{2 e^{2}}{\pi}$.
(2) (Final, 2015) Show that $2 x^{2}-3+\sin x+\cos x=0$ has at most two solutions.

Solution: See WS 17

(3) Suppose f satisfies the hypotheses of the MVT and that $f^{\prime}(x)>0$ for all $x \in(a, b)$. Show that $\frac{f(b)-f(a)}{b-a}>0$, and hence that $f(b)>f(a)$.

Solution: There is $c \in(a, b)$ so that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)>0 .
$$

Multiplying by the positive quantity $b-a$ we find $f(b)-f(a)>0$, that is

$$
f(b)>f(a)
$$

2. The shape of a the graph

(4) Let f be twice differentiable on $[a, b]$.
(a) Suppose first that $f(a)=f(b)=0$ and that f is positive somewhere between a, b. Show that there is c between a, b so that $f^{\prime \prime}(c)<0$.
Solution: Suppose $a<x<b$ so that $f(x)>0$. By the MVT there are $y \in(a, x)$ and $z \in(x, b)$ so that

$$
\begin{aligned}
& f^{\prime}(y)=\frac{f(x)-f(a)}{x-a}=\frac{f(x)}{x-a}>0 \\
& f^{\prime}(z)=\frac{f(b)-f(x)}{b-x}=-\frac{f(x)}{b-a}<0
\end{aligned}
$$

In particular, $f^{\prime}(y)>f^{\prime}(z)$ but $y<z$ so $f^{\prime}(z)-f^{\prime}(y)<0$ but $z-y>0$. Applying the MVT to the twice differentiable function f^{\prime} on the interval $[y, z]$ gives $c \in[y, z] \subset(a, b)$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(z)-f^{\prime}(y)}{z-y}<0
$$

(b) Now let $f(a), f(b)$ take any values, but suppose $f^{\prime \prime}(x)>0$ on (a, b). Let $L: y=m x+n$ be the line through $(a, f(a)),(b, f(b))$. Applying part (a) to $g(x)=f(x)-(m x+n)$ show that the graph of f lies below the line L.
Solution: Let $g(x)=f(x)-(m x+n)$. Since the line passes through $(a, f(a))$ and $(b, f(b))$ we have $g(a)=g(b)=0$. Also, for all $a<x<b, g^{\prime \prime}(x)=f^{\prime \prime}(x)>0$ since $(m x+n)^{\prime \prime}=0$. It follows that there is no point such that $g(x)>0$, so $g(x) \leq 0$ that is $f(x) \leq m x+n$.

Definition. We say f is concave up (or "convex") on an interval [a, b] if its graph lies under the secant lines in this interval. This is true, for example, if $f^{\prime \prime}>0$ on (a, b). We say f is concave down (or "concave") on the interval if its graph lies below the scant lines, in particular when $f^{\prime \prime}<0$ on (a, b). We say that f has an inflection point at x_{0} if its second derivative changes sign there.

[^0]
[^0]: Date: $5 / 11 / 2019$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

