1. Implicit Differentiation

(1) Find the line tangent to the curve \(y^2 = 4x^3 + 2x \) at the point \((2, 6)\).

(2) (Final, 2015) Let \(xy^2 + x^2y = 2 \). Find \(\frac{dy}{dx} \) at the point \((1, 1)\).

(3) (Final 2012) Find the slope of the line tangent to the curve \(y + x \cos y = \cos x \) at the point \((0, 1)\).

(4) Find \(y'' \) (in terms of \(x, y \)) along the curve \(x^5 + y^5 = 10 \) (ignore points where \(y = 0 \)).

(5) Find \(y' \) if \((x + y) \sin(xy) = x^2 \).
2. INVERSE TRIG FUNCTIONS

(1) Evaluation
(a) (Final 2014) Evaluate \(\arcsin \left(-\frac{1}{2} \right) \); Find \(\arcsin \left(\sin \left(\frac{31\pi}{11} \right) \right) \).

(b) (Final 2015) Simplify \(\sin(\arctan 4) \)

(c) Find \(\tan(\arccos(0.4)) \)

(2) Differentiation
(a) Find \(\frac{d}{dx} (\arcsin (2x)) \)

(b) Find the line tangent to \(y = \sqrt{1 + (\arctan(x))^2} \) at the point where \(x = 1 \).

(c) Find \(y' \) if \(y = \arcsin \left(e^{5x} \right) \). What is the domain of the functions \(y, y' \)?