Math 100 – WORKSHEET 4 CONTINUITY: THE IVT; THE DERIVATIVE

1. Continuity

(1) Find c, d, e as appropriate such that each function is continuous on its domain:

$$f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1 \\ c & x = 1 \\ d - x^2 & x > 1 \end{cases}$$
 (Final 2013) $g(x) = \begin{cases} ex^2 + 3 & x \ge 1 \\ 2x^3 - e & x < 1 \end{cases}$

(2) Where are the following functions continuous?

$$f(x) = \frac{1}{\sqrt{7 - x^2}};$$
 $g(x) = \frac{x^2 + 2x + 1}{2 + \cos x};$ $h(x) = \frac{2 + \cos x}{x^2 + 2x + 1}$

(3) (Final 2011) Suppose f, g are continuous such that g(3) = 2 and $\lim_{x\to 3} (xf(x) + g(x)) = 1$. Find f(3).

2. The Intermediate Value Theorem

Theorem. Let f(x) be continuous for $a \le x \le b$. Then f(x) takes every value between f(a), f(b).

- (1) Show that:
 - (a) $f(x) = 2x^3 5x + 1$ has a zero in $0 \le x \le 1$.
 - (b) $\sin x = x + 1$ has a solution.

(2) (Final 2011) Let y = f(x) be continuous with domain [0,1] and range in [3,5]. Show the line y = 2x + 3 intersects the graph of y = f(x) at least once.

(3) (Final 2015) Show that the equation $2x^2 - 3 + \sin x + \cos x = 0$ has at least two solutions.

3. Definition of the derivative

Definition. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

(1) Find f'(a) if (a) $f(x) = x^2$, a = 3.

- (b) $f(x) = \frac{1}{x}$, any *a*.
- (c) $f(x) = x^3 2x$, any a. (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$).
- (2) Express the limit as a derivative: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$.