1. **CONTINUITY**

(1) Find c, d, e as appropriate such that each function is continuous on its domain:

\[f(x) = \begin{cases} \sqrt{x} & 0 \leq x < 1 \\ c & x = 1 \\ d - x^2 & x > 1 \end{cases} \]

(Final 2013)

\[g(x) = \begin{cases} ex^2 + 3 & x \geq 1 \\ 2x^3 - e & x < 1 \end{cases} \]

(2) Where are the following functions continuous?

\[f(x) = \frac{1}{\sqrt{1 - x^2}}; \quad g(x) = \frac{x^2 + 2x + 1}{2 + \cos x}; \quad h(x) = \frac{2 + \cos x}{x^2 + 2x + 1} \]

(3) (Final 2011) Suppose f, g are continuous such that $g(3) = 2$ and $\lim_{x \to 3} (xf(x) + g(x)) = 1$. Find $f(3)$.

2. **The Intermediate Value Theorem**

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.

(1) Show that:

(a) $f(x) = 2x^3 - 5x + 1$ has a zero in $0 \leq x \leq 1$.

(b) $\sin x = x + 1$ has a solution.
(2) (Final 2011) Let \(y = f(x) \) be continuous with domain \([0, 1]\) and range in \([3, 5]\). Show the line \(y = 2x + 3 \) intersects the graph of \(y = f(x) \) at least once.

(3) (Final 2015) Show that the equation \(2x^2 - 3 + \sin x + \cos x = 0 \) has at least two solutions.

3. DEFINITION OF THE DERIVATIVE

Definition. \(f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \)

(1) Find \(f'(a) \) if
(a) \(f(x) = x^2, \) \(a = 3. \)

(b) \(f(x) = \frac{1}{x}, \) any \(a. \)

(c) \(f(x) = x^3 - 2x, \) any \(a. \) (you may use \((a + h)^3 = a^3 + 3a^2h + 3ah^2 + h^3\)).

(2) Express the limit as a derivative: \(\lim_{h \to 0} \frac{\cos(5+h) - \cos 5}{h}. \)