Math 100 - WORKSHEET 4 CONTINUITY: THE IVT; THE DERIVATIVE

1. Continuity

(1) Find c, d, e as appropriate such that each function is continuous on its domain:

$$
f(x)=\left\{\begin{array}{ll}
\sqrt{x} & 0 \leq x<1 \\
c & x=1 \\
d-x^{2} & x>1
\end{array} \quad \text { (Final 2013) } g(x)= \begin{cases}e x^{2}+3 & x \geq 1 \\
2 x^{3}-e & x<1\end{cases}\right.
$$

(2) Where are the following functions continuous?

$$
f(x)=\frac{1}{\sqrt{7-x^{2}}} ; \quad g(x)=\frac{x^{2}+2 x+1}{2+\cos x} ; \quad h(x)=\frac{2+\cos x}{x^{2}+2 x+1}
$$

(3) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

2. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
(1) Show that:
(a) $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.
(b) $\sin x=x+1$ has a solution.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.
(3) (Final 2015) Show that the equation $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions.

3. Definition of the Derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=\frac{1}{x}$, any a.
(c) $f(x)=x^{3}-2 x$, any a. (you may use $\left.(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.
(2) Express the limit as a derivative: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$.

