Math 100 - WORKSHEET 3 LIMITS AT INFINITY; CONTINUITY

\author{

1. The Squeeze Theorem
}
(1) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.
(2) (Final, 2014) Suppose that $8 x \leq f(x) \leq x^{2}+16$ for all $x \geq 0$. Find $\lim _{x \rightarrow 4} f(x)$.

2. Limits at infinity

(1) Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=$
(b) (Final, 2015) $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+2 x-8}=$
(c) (Quiz, 2015) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}=$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=$
(e) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)=$

3. Continuity

(1) Which of these functions are continuous everywhere? Why?
(a) $f(x)= \begin{cases}x & x<0 \\ \cos x & x \geq 0\end{cases}$
(b) $f(x)= \begin{cases}x & x<0 \\ \sin x & x \geq 0\end{cases}$
(2) Let $f(x)=\frac{x^{3}-x^{2}}{x-1}$.
(a) Why is $f(x)$ discontinuous at $x=1$?
(b) Find b such that $g(x)=\left\{\begin{array}{ll}f(x) & x \neq 1 \\ b & x=1\end{array}\right.$ is continouous everywhere.
(c) Find c, d such that $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ c & x=1 \\ d-x^{2} & x>1\end{array}\right.$ is continuous.
(d) (Final 2013) For which value of the constant c is $f(x)=\left\{\begin{array}{ll}c x^{2}+3 & x \geq 1 \\ 2 x^{3}-c & x<1\end{array}\right.$ continuous on $(-\infty, \infty) ?$
(3) Where are the following functions continuous?
(a) $\frac{1}{\sqrt{7-x^{2}}}$
(b) $\frac{x^{2}+2 x+1}{2+\cos x}$
(c) $\frac{2+\cos x}{x^{2}+2 x+1}$
(d) $\log (\sin x)$
(4) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

