Math 100 - SOLUTIONS TO WORKSHEET 3 LIMITS AT INFINITY; CONTINUITY

1. The Squeeze Theorem

(1) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.

Solution: Since $-1 \leq \sin \theta \leq 1$ for all θ while $x^{2} \geq 0$ we have for all x that

$$
-x^{2} \leq x^{2} \sin \left(\frac{\pi}{x}\right) \leq x^{2}
$$

Now $\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0}\left(-x^{2}\right)=0$, so by the sandwich theorem $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)=0$ too.
(2) (Final, 2014) Suppose that $8 x \leq f(x) \leq x^{2}+16$ for all $x \geq 0$. Find $\lim _{x \rightarrow 4} f(x)$.

Solution: We have $\lim _{x \rightarrow 4} 8 x=32$ and $\lim _{x \rightarrow 4} x^{2}+16=32$ so by the sandwich theorem $\lim _{x \rightarrow 4} f(x)$ exists and equals 32 .

2. Limits at infinity

(1) Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=$

Solution: $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x} \cdot \frac{1+\frac{1}{x^{2}}}{1-\frac{3}{x}}=\lim _{x \rightarrow \infty} x \cdot \frac{1+\frac{1}{x^{2}}}{1-\frac{3}{x}}=\infty$.
(b) (Final, 2015) $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+2 x-8}=$

Solution: $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+2 x-8}=\lim _{x \rightarrow \infty} \frac{x}{x^{2}} \cdot \frac{1+\frac{1}{x}}{1+\frac{2}{x}-\frac{8}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1+\frac{1}{x}}{1+\frac{2}{x}-\frac{8}{x^{2}}}=0$.
(c) (Quiz, 2015) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}=$

Solution: We have

$$
\begin{aligned}
\frac{3 x}{\sqrt{4 x^{2}+x}-2 x} & =\frac{3 x}{\sqrt{x^{2}\left(4+\frac{x}{x^{2}}\right)}-2 x}=\frac{3 x}{\sqrt{x^{2}} \sqrt{4+\frac{1}{x}}-2 x} \\
& =\frac{3 x}{|x| \sqrt{4+\frac{1}{x}}-2 x}=\frac{3 x}{(-x) \sqrt{4+\frac{1}{x}}-2 x} \\
& =\frac{3}{-\sqrt{4+\frac{1}{x}}-2} \xrightarrow[x \rightarrow-\infty]{\longrightarrow-\sqrt{4+0}-2}=\frac{3}{4}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=$

Solution: $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\lim _{x \rightarrow \infty} \frac{x^{2} \sqrt{1+\frac{\sin x}{x^{4}}}}{x^{2}\left(1-\frac{\cos x}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{\sin x}{x^{4}}}}{1-\frac{\cos x}{x^{2}}}$. Now for all x we have $-\frac{1}{x^{4}} \leq \frac{\sin x}{x^{4}} \leq \frac{1}{x^{4}}$ and $-\frac{1}{x^{2}} \leq \frac{\cos x}{x^{2}} \leq \frac{1}{x^{2}}$. Since $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{4}}=0$ by the squeeze theorem we have $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{4}}=\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}}=0$. Thus

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\frac{\sqrt{1+0}}{1-0}=1 .
$$

(e) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)=$

Solution: We have

$$
\begin{aligned}
\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} & =\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} \cdot \frac{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}=\frac{\left(x^{2}+2 x\right)-\left(x^{2}-1\right)}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}} \\
& =\frac{2 x+1}{|x| \sqrt{1+\frac{2}{x}}+|x| \sqrt{1-\frac{1}{x^{2}}}}=\frac{x\left(2+\frac{1}{x}\right)}{-x \sqrt{1+\frac{2}{x}}+(-x) \sqrt{1-\frac{1}{x^{2}}}} \\
& =-\frac{2+\frac{1}{x}}{\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{1}{x^{2}}}} \frac{2}{x \rightarrow-\infty}-\frac{2}{1+1}=-1
\end{aligned}
$$

3. Continuity

(1) Which of these functions are continuous everywhere? Why?
(a) $f(x)= \begin{cases}x & x<0 \\ \cos x & x \geq 0\end{cases}$

Solution: This is clearly continuous on $(-\infty, 0)$ and $(0, \infty)$ but $\lim _{x \rightarrow 0^{-}} f(x)=0$ while $\lim _{x \rightarrow 0^{+}} f(x)=1$.
(b) $f(x)= \begin{cases}x & x<0 \\ \sin x & x \geq 0\end{cases}$

Solution: This is clearly continuous on $(-\infty, 0)$ and $(0, \infty)$. Also, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=$ $0=f(0)$ so the function is continuous everywhere.
(2) Let $f(x)=\frac{x^{3}-x^{2}}{x-1}$.
(a) Why is $f(x)$ discontinuous at $x=1$?

Solution: The formula is undefined there.
(b) Find b such that $g(x)=\left\{\begin{array}{ll}f(x) & x \neq 1 \\ b & x=1\end{array}\right.$ is continouous everywhere.

Solution: $\quad \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}(x-1)}{x-1}=\lim _{x \rightarrow 1} x^{2}=1$ so setting $b=1$ gives the desired function.
(c) Find c, d such that $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ c & x=1 \\ d-x^{2} & x>1\end{array}\right.$ is continuous.

Solution: The function is already continuous on $(-\infty, 1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} f(x)=$ $\lim _{x \rightarrow 1} \sqrt{x}=1$ so we must have $c=1$. We also need $1=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(d-x^{2}\right)=$ $d-1$ so we need $d=2$.
(d) (Final 2013) For which value of the constant c is $f(x)=\left\{\begin{array}{ll}c x^{2}+3 & x \geq 1 \\ 2 x^{3}-c & x<1\end{array}\right.$ continuous on $(-\infty, \infty) ?$
Solution: The function is already continuous on $(-\infty, 1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} f(x)=$ $2 \cdot 1^{3}-c=2-c$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} c \cdot 1^{2}+3=3+c=f(1)$ so the function will be continuous at $x=1$ iff $2-c=3+c$ that is if $c=\frac{5}{2}$.
(3) Where are the following functions continuous?
(a) $\frac{1}{\sqrt{7-x^{2}}}$

Solution: $\quad(-\sqrt{7}, \sqrt{7})$.
(b) $\frac{x^{2}+2 x+1}{2+\cos x}$

Solution: $(-\infty, \infty)$
(c) $\frac{2+\cos x}{x^{2}+2 x+1}$

Solution: The denominator vanishes at $x=1$ where the function blows up $(2+\cos 1 \neq 0)$ so the domain is $(-\infty,-1) \cup(-1, \infty)$.
(d) $\log (\sin x)$

Solution: The logarithm is defined only for positive arguments, so the domain is $\{x \mid \sin x>0\}=$ $\bigcup_{k \in \mathbb{Z}}\left(2 \pi k-\frac{\pi}{2}, 2 \pi k+\frac{\pi}{2}\right)$
(4) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

Solution: Since f, g are continuous and applying the limit laws we have

$$
\begin{aligned}
1=\lim _{x \rightarrow 3}(x f(x)+g(x)) & =\left(\lim _{x \rightarrow 3} x\right)\left(\lim _{x \rightarrow 3} f(x)\right)+\left(\lim _{x \rightarrow 3} g(x)\right) \\
& =3 f(3)+g(3)=3 f(3)+2 .
\end{aligned}
$$

Solving for $f(3)$ we get

$$
f(3)=-\frac{1}{3} \text {. }
$$

