Lior Silberman’s Math 535, Problem Set 4: Preliminaries on Tori

Connected abelian Lie groups

1. Let \(\Lambda < \mathbb{R}^d \) be a discrete subgroup. Show that \(\Lambda = \bigoplus_{i=1}^k \mathbb{Z}v_i \) for a linearly independent set \(\{v_i\}_{i=1}^k \subset \mathbb{R}^d \). Conversely show that such a subgroup is discrete.

2. Let \(G \) be an Abelian Lie group, and suppose that \(\pi_0(G) = G/\mathcal{G} \) is finite. Show that \(G \cong \mathcal{G} \times \pi_0(G) \). (Hint: show that a connected abelian Lie group is divisible).

Tori

3. (Fourier analysis on tori) Let \(T_n = \mathbb{R}^n / \mathbb{Z}^n \) be the \(n \)-torus. A trigonometric polynomial on \(T_n \) is a function of the form \(f(x) = \sum_{k=1}^l a_k e(k \cdot x) \) where \(k \in (\mathbb{Z}^n)^* \) lie in the dual lattice.

 (a) Use Peter–Weyl to show that the space of trigonometric polynomials is dense in \(C(T_n) \) and \(L^2(T_n) \).

 (b) Use Stone–Weierstrass instead to show that the trigonometric polynomials are dense in \(C(T_n) \), and use that to show that their orthocomplement in \(L^2(T_n) \) vanishes, getting density there too.

 (c) For \(f \in L^2(T_n) \) and \(k \in (\mathbb{Z}^n)^* \) set \(\hat{f}(k) = \int_{T_n} f(x)e(-k \cdot x) \, dx \) (probability Haar measure). Then \(\sum_k \hat{f}(k)e(k \cdot x) \) converges in \(L^2 \) to \(f \).

 (d) For \(f \in C^m(T_n) \) use integration by parts to show that \(\left| \hat{f}(k) \right| \leq C_f \left(1 + |k| \right)^{-m} \). Conclude that for \(m > n \), the series \(\sum_k \hat{f}(k)e(k \cdot x) \) converges in \(C^{m-n-1} \) to \(f \).

 (e) (Weyl criterion) Let \(\{\mu_j\}_{j=1}^\infty \) be a sequence of Borel probability measures on \(T_n \). Show that \(\mu_j(f) \to \mu(f) \) for every \(f \) iff this holds for the plane waves \(f(x) = e(k \cdot x) \).

4. (Weyl equidistribution) Let \(\{\xi_i\}_{i=1}^n \subset \mathbb{R} \) be linearly independent over \(\mathbb{Q} \) where \(\theta_0 = 1 \), and let \(\xi = (\xi_i)_{i=1}^n \mod \mathbb{Z}^n \in T_n \). Show that the sequence \(\left\{ k\xi \right\}_{k=1}^\infty \subset T_n \) is uniformly distributed: for any open \(U \subset T_n \),

\[
\frac{1}{K} \# \left\{ 1 \leq k \leq K \mid k\xi \in U \right\} = \frac{\text{vol}(U)}{\text{vol}(T_n)}.
\]

Conclude that the sequence \(\left\{ k\xi \right\}_{k=1}^\infty \) is dense in the torus.

Hint: Let \(\mu_K = \frac{1}{K} \sum_{k=1}^K \delta_{k\xi} \). By 1(e) to show \(\mu_K \xrightarrow{\text{wk-*}} \text{vol} \) it suffices to test against plane waves.