Last time: 1) A primitive root mod m is a residue \(r \) s.t. \(\text{ord}_m(r) = \phi(m) \) (largest possible) \((r, m) = 1 \).

Then \(U(m) = \{ a \mod m \mid (a, m) = 1 \} = \{ r^i \mid 0 \leq i \leq \phi(m) - 1 \} \).

2) Primitive roots exist iff \(m \in \{2, 4, p^k, 2p^k \mid p \text{ odd prime} \} \) (PF today).

3) Discrete log: given \(r^j = b \), give \(r, b \) find \(j \).
 (Has the usual properties of logarithms, since \(r^{i+j} = r^i \cdot r^j \).
 So also \(r^{i+j} = r^i \cdot (r^j)^{i} \) (mod \(\phi(m) \)).

4) Use this to solve equations: if \(r^i = b \) then \(\text{equation } x^n = b(m) \) is equivalent to \(ny = j \) (mod \(\phi(m) \))
 by change of variable \(x = r^y \).

Today: 1) proof of existence of primitive roots mod \(p \)

2) Diffie-Hellman key exchange

3) with power residues mod \(p \).
Thm: Let \(p \) be prime. Then, there exist primitive roots mod \(p \), (actually \(\phi(p-1) \) of them).

Pf: Idea: count how many residue classes mod \(p \) have each order dividing \(p-1 \).

Ingredients: (1) Every non-zero residue mod \(p \) is invertible.

⇒ (2) A polynomial of degree \(d \) has at most \(d \) roots mod \(p \).

(Sketch: if \(f(x) \) has root \(a \) \(\rightarrow \) then \(x-a \) divides \(f(x) \).

But every root of \(f \) other than \(a \) must be a root of \(g \).)

(3) \(n = \sum_{d \mid n} \phi(d) \)

If of this: let \(n = p-1 \) so the order of each \(a \) mod \(p \) divides \(n \). Goal: for each \(d \mid n \), exactly \(\phi(d) \) classes of order \(d \).

For this, let \(a \) have order \(d \) mod \(p \), where \(d \mid n = p-1 \).

(Fermat's Little Thm: \(\text{ord}_p(a) \mid p-1 \) for all \(a \neq 0 \) (mod \(p \)).

If \(a \) has order \(d \), \(a \) is a root of the polynomial \(x^d - 1 \).

Note: \(b^d \equiv 1 \) (mod \(p \)) if \(\text{ord}_p(b) \mid d \) so \(\{ \text{roots of } x^d - 1 \} = \{ \text{classes of order } d \} \).

⇒ at most \(d \) classes of order dividing \(d \).

On the other hand, the \(d \) distinct classes \(\{ a^{dj} \} \) have order dividing \(d \): \((a^{dj})^d = a^{dj} \cdot a^{dj} \cdot a^{dj} = (a^d)^j \equiv 1 \) (mod \(p \)).
If \(a \) has order \(d \) mod \(p \), \(\{ a^i \}_{i=0}^{d-1} \) are exactly the classes having order dividing \(d \).

Next step: count classes of order \(d \) exactly, \(d/2 \) or \(d \).

Example: say 2|d. The \(a^2 \) has order \(d/2 \): \((a^2)^{d/2} = a^{d} \equiv 1 \pmod{p} \).

but if \(f < d/2 \), \(b^f = a^{2f} \not\equiv 1 \pmod{p} \).

What about \(a^4 \) or \(a^6 \)?

If \(4|d \), \(\text{ord}_p(a^4) = d/4 \) what if \(2|d \), but \(d/2 \)?

The \(a^2 \) has order \(d/2 \), odd, \(a \) is invertible mod \(d/2 \).

Let \(\overline{a} \) be an inverse, then \(a^2 = (a^2)^{d/2} \). But \(a^2 = (a^2)^{2 \cdot d/2} = (a^2)^{d/2} \equiv a^2 \).

If \(a \), \(b \) are powers of each other, have same order.

If \(b \) power of \(a \) then \(\text{ord}_p(b) \mid \text{ord}_p(a) \).

If reverse also true then \(\text{ord}_p(b) = \text{ord}_p(a) \).

\(\Rightarrow \) if \(2|d \), \(4|d \), \(\text{ord}_p(a^4) = d/2 \)

\(\Rightarrow \) if \(2|d \), \(6|d \), \(\text{ord}_p(a^6) = d/6 \)

\(\Rightarrow \) if \(2|d \), \(3|d \), \(\text{ord}_p(a^6) = \text{ord}(a^2) = d/2 \) since \(3 \) invertible mod \(d/2 \).

See: if \(j \) is invertible mod \(\text{ord}_m(a) \) then \(a^j \equiv \text{ord}_m(a) = \text{ord}_m(a)^{\phi(d) \cdot j} \).

(If: if \(j \) is an inverse, \(a = (a^j)^{\phi(d)} \).

\(\Rightarrow \) at least \(\phi(d) \) powers of \(a \) of order \(d \).

In general, \(\text{ord}_m(a^i) = \frac{\text{ord}_m(a)}{\gcd(\text{ord}_m(a), i)} \).
Proof of claim: \(d = \text{ord}_m(a), \ e = \gcd(j, d) \)

\[a^e \text{ has order } \frac{d}{e} \text{ mod } m \]

and \(a^j \) is invertible mod \(\frac{d}{e} \) \((\gcd(j, \frac{d}{e}) = 1) \)

so \(\text{ord}_m((a^e)^j) = \text{ord}_m(a^e) = \frac{d}{e} \)

so \(\text{ord}_m(a^j) = d = \text{ord}_m(a) \) iff \(j \) invertible prime to \(d \)

Rightarrow \(\phi(d) \) classes of order \(d \)

Recap: \(p \) prime, \(n = p-1 \), \(d | p-1 \), \(a \mod p \) has order \(d \)

\Rightarrow exactly \(\phi(d) \) classes of order \(d \)

If no \(\phi(d) \) element has order \(d \) then have 0 such classes

Endgame: let \(f(d) = \# \text{ classes of order } d \)

Fermat: every class has order \(|n = p-1| \)

so \(\sum_{d | n} f(d) = n = p-1 \)

and \(\sum_{d | n} \phi(d) = n \)

Each summand on top is either equal to summand on bottom or zero. But sums are equal, so no zeroes:

\(f(d) = \phi(d) \) for all \(d \), \(\phi \) in particular

\(f(p-1) = \phi(p-1) \geq 1 > 0 \).