Def: A Diophantine equation is one where the unknowns are integers.

Examples:
- \(x^2 + y^2 = z^2 \)
- \(x^3 + y^3 = z^3 \)
- \(x^4 + y^4 = z^4 \)

Results:
- \(6x + 7y = 15 \) has no solutions.
- \(2x = 7 \) has no solutions.
- \(217 \) is a solution.
- \(6x + 7y = 15 \) has solutions since \((6, 7) = 1\).
- \(x^2 + y^2 = z^2 \) has many solutions (e.g., \(3^2 + 4^2 = 5^2 \)).
- \(x^4 + y^4 = z^4 \) has no solutions beyond \(xy = 0 \).
- \(-x^3 + y^3 = z^3 \) (Fermat) has no non-trivial solutions (Euler).
Example: \(x^2 + y^2 = z^2 \)

Step (1): Common Factors

Say prime \(p \) divided two of \(x, y, z \). Then \(p \) divides the square of the third. So \(p \) divides the third (if \(p \) divides the square of the third, then \(p \) divides the third and divides the third). Then \(p^2 \mid x^2, p^2 \mid y^2, p^2 \mid z^2 \) so can divide \(x, y, z \) by \(p \).

Still have \(\left(\frac{x}{p} \right)^2 + \left(\frac{y}{p} \right)^2 = \left(\frac{z}{p} \right)^2 \)

Keep doing this until no common factors

\(\Rightarrow \) can write soln as \(x = d \cdot x', y = d \cdot y', z = d \cdot z' \)

where \(d \in \mathbb{Z}, x', y', z' \) pairwise relatively prime

Step (2): Constraints from Congruence

\(x, y \) can't both be even

Now if \(x, y, z \) pairwise prime, \(x, y \) can't both be even

HW: If \(x \) is even, \(x^2 \) is divisible by \(4 \)

If \(x \) is odd, \(x^2 \) has remainder 1 when divided by \(4 \)

If \(x, y \) were both odd, \(x^2, y^2 \) would each have form \(4q + 1 \)

So \(z^2 = x^2 + y^2 \) would have form \(4q + 2 \) impossible
So can't have both even or both odd wlog x is odd, y is even. So \(x^2 + y^2\) is odd, so \(z\) is odd.

Step (3): Unique Factorization

\[
x^2 + y^2 = z^2 \Rightarrow y^2 = 2^2 - x^2 = (2-x)(2+x)
\]

Both \(x, z\) odd, \(y\) even, so also have

\[
\left(\frac{y}{2}\right)^2 = \left(\frac{2-x}{2}\right)\left(\frac{2+x}{2}\right)
\]

Can \(a\) prime \(p\) divide both \(\frac{2-x}{2}, \frac{2+x}{2}\)?

No: if \(p|\frac{2+x}{2}\), and \(p|\frac{2-x}{2}\) then \(p|z = \frac{2+x}{2} + \frac{2-x}{2}\)

and \(p|x = \frac{2+x}{2} - \frac{2-x}{2}\).

So if we write

\[
\frac{2+x}{2} = p_1 \cdot p_2 \cdots p_r
\]

\[
\frac{2-x}{2} = q_1 \cdot q_2 \cdots q_s
\]

in the factorization \(\left(\frac{y}{2}\right)^2 = p_1 \cdot p_2 \cdots p_r \cdot q_1 \cdots q_s\)

all \(p, q\) distinct. But in \(\frac{y}{2}\) every prime occurs an even number of times, so \(e_i, f_i\) are even.

\[
36 = 2^2 \cdot 3^2, \quad 300 = 2^2 \cdot 3^2 \cdot 5^2 = (2^2 \cdot 3^2) \cdot (5^2)
\]
So \(\frac{7+x}{2}, \frac{7-x}{2} \) are squares.

Say \(\frac{7+x}{2} = n^2, \frac{7-x}{2} = m^2 \).

Then, \(m, n \) have no common factors (any common factors would divide \(x \) and \(t \)).

Bottom line: If \(\frac{7+x}{2} = n^2, \frac{7-x}{2} = m^2 \) then

\[z = n^2 + m^2, \quad x = n^2 - m^2, \quad y = 2mn \]

Revert assumption \(\text{if primality} \)

\[\left(\frac{y}{2} \right)^2 = m^2n^2 \]

i.e., if \(x^2 + y^2 = z^2 \) then have \(d, m, n \) with \((m, n) = 1 \), \(n > m \), one for \(m, n \) even

\[x = d \cdot (n^2 - m^2) \]
\[y = d \cdot 2mn \]
\[z = d \cdot (m^2 + n^2) \]

Eq.

\[3 = 2^2 - 1^2 \]
\[4 = 2 \cdot 2 \cdot 1 \]
\[5 = 2^2 + 1^2 \]

Step 2: Check:

\[(d(n^2 - m^2))^2 + (d \cdot 2mn)^2 = d^2 \left(n^4 - 2m^2n^2 + m^4 \right) + d^2 \left(4m^2n^2 \right) \]

\[= d^2 \left(n^4 + 2m^2n^2 + m^4 \right) = d^2 \left(n^2 + m^2 \right)^2 \]

\[= (d \cdot (n^2 + m^2))^2 \checkmark \]
Simple Version

Consider \(x^2 = 2y^2 \)

has sol'n \(0^2 = 2 \cdot 0^2 \) Suppose \(x, y \neq 0 \)

let \(p \) be odd prime \(\implies p \mid x \) then \(p \mid x^2 \) so \(p \mid 2y^2 \)

so \(p \mid 2 \) or \(p \mid y \) or \(p \mid y^2 \) so \(p \mid y \)

then \(p^2 \mid x^2 \), \(p^2 \mid y^2 \) and \(\left(\frac{x}{p} \right)^2 = 2 \left(\frac{y}{p} \right)^2 \)

Repetitively doing this, eventually no odd prime divides \(x \) or \(y \)

So \(x \) is power of \(2 \): \(x = 2^k \)

and \(y \) is a power of \(2 \): \(y = 2^l \) so \(x^2 = 2^{2k} \) \(2y^2 = 2^{2l+1} \)

So can't have \(x^2 = 2y^2 \)

\(\implies \left(\frac{x}{y} \right)^2 = 2 \) has no solutions! (\(\sqrt{2} \) is irrational)

Lemma: If \(x = \prod p^{e_p} \) then \(x^2 = \prod p^{e_p+1} \)

\(\prod (p^{e_p+1}) = \prod p^{e_p + 2} \) (every exponent is even)
Go back to $10x + 7y = 33$

Solved by:

1. Using Bezout to find particular soln:

 $(10, 7) = 1 = 3 \cdot 7 - 2 \cdot 10 \Rightarrow 33 = -66 \cdot 10 + 99 \cdot 7$

2. Finding the general soln to homogeneous eqn

 $10x + 7y = 0$

 $\Rightarrow t \mid y \Rightarrow t \mid 10x \Rightarrow t \mid x \Rightarrow (t, 10t) = 1 \Rightarrow x = 7t$

 so $y = -10t$.

Put together:

\[
\begin{align*}
2x &= -66 + 7t \\
y &= 99 - 10t
\end{align*}
\]

(consecutive integer pts on line differ by $\pm (\frac{7}{10})$)

New interpretation:

\[10x + \left(\text{multiple of } \frac{7}{10} \right) = 33\]

(implicit unknown: By

Solution was:

\[x = -66 + \left(\text{multiple of } \frac{7}{10} \right)\]

Also $x = 4 + \left(\text{multiple of } \frac{6}{10} \right)$
New notation: Instead of \(10x + \left(\frac{\text{mult}}{7}\right) = 33\) or \(10x = 33 + \left(\frac{\text{mult}}{7}\right)\)

write (Gauss)

\[10x \equiv 33 \pmod{7}\]
\[x \equiv -9 + \left(\frac{\text{mult}}{7}\right)\]

Say "10x is congruent to 33 modulo 7").

Instead of \(x = -66 + \left(\frac{\text{mult}}{7}\right)\)

write \(x \equiv 4 \pmod{7}\)
\(x \equiv 4 \pmod{7}\)
\(x \equiv 4 \pmod{7}\)

Examples: \(365 = 1 + 7 \cdot 52\)
\[\Rightarrow 365 \equiv 1 \pmod{7}\]
Bottom line: Equation $10x + 7y = 33$

has only many solutions: \[(x, y) = (-66) + (7)k \]

Congruence $10x \equiv 33 \pmod{7}$

has the "unique" solution $x \equiv 4 \pmod{7}$

Aside: One way to solve congruence $10x \equiv 33 \pmod{7}$

is to put back the implicit variable, convert to equation $10x + 7y = 33$

Def: Let $a, b, m \in \mathbb{Z}$, with $m > 1$. Say $a \equiv b \pmod{m}$ if $a - b$ is divisible by m.

(\Leftarrow) $a - b = m \cdot k$ for some k, or $a = b + mk$ for some k.

Write $a \equiv b \pmod{m}$.

If $a - b$ not divisible by m, say a is not congruent to $b \pmod{m}$, write $a \not\equiv b \pmod{m}$.

Eg: $4 \equiv 11 \equiv 18 \equiv -66 \pmod{7}$

but $4 \not\equiv 11 \pmod{6}$
Earlier today (HW): If $x \equiv 1$ (2) then $x^2 \equiv 1$ (4)

Proof: (1) $\equiv \cdot (m)$ is an equivalence relation:

(a) $x \equiv x (m)$ for all x
(b) if $x \equiv y (m)$ then $y \equiv x (m)$
(c) if $x \equiv y (m)$ and $y \equiv z (m)$ then $x \equiv z (m)$

(2) If $x \equiv x' (m)$, $y \equiv y' (m)$
then $x + y \equiv x' + y' (m)$
$x \cdot y \equiv x' \cdot y' (m)$