Multiplicative Order

1. Let n be a pseudoprime to base 2 (recall that this means $2^{n-1} \equiv 1 \pmod{n}$). Show that $m = 2^n - 1$ is also a pseudoprime to base 2.

 Hint: Show that $n | m - 1$ and use the fact that you know the order of 2 mod m.

2. Let p be a prime divisor of the nth Fermat number $F_n = 2^{2^n} + 1$.
 (a) Find the order of 2 mod p.
 (b) Show that $p \equiv 1 \pmod{2^{n+1}}$.
 (c) Show that for any $a \geq 1$ there are infinitely many primes p for which the order of 2 mod p is divisible by 2^a.

 RMK Note that (b) simplifies the search for prime divisors of Fermat numbers. We will later show that $p \equiv 1 \pmod{2^{n+2}}$ holds.

3. Elements of order 2 mod m.
 (a) Let p be odd, and let $k \geq 1$. Show that the congruence $x^2 \equiv 1 \pmod{p^k}$ has only the two obvious solutions $x \equiv \pm 1 \pmod{p^k}$.

 Hint: Can both $x - 1, x + 1$ be powers of p?

 (*b*) Let n be an odd number, divisible by exactly r distinct primes. Set up a bijection between congruence classes mod n satisfying $x^2 \equiv 1 \pmod{n}$ and functions $f \in \{-1, 1\}^r$. Conclude that there are precisely 2^r congruence classes mod n which solve the equation.

4. Using Fermat’s Little Theorem, show that for all integers n, $30 | n^9 - n$.

 Hint: For each prime $p | 30$ show that $n^p - n | n^9 - n$ as polynomials.

Wilson’s Theorem

5. We will show that if $n \geq 6$ is composite then $(n - 1)! \equiv 0 \pmod{n}$.
 (a) (The easy case) Assume first that n is divisible by at least two distinct primes, that is that $n = \prod_{j=1}^r p_j^{k_j}$ for some distinct primes p_j where $k_j \geq 1$ for all j and $r \geq 2$. Show that $(n - 1)! \equiv 0 \pmod{n}$.

 Hint: It is enough to show the congruence mod each $p_j^{k_j}$ separately. Why is $(n - 1)!$ divisible by $p_j^{k_j}$?

 (b) Let p be prime and let $k \geq 3$. Show that $p^k | (p^k - 1)!$.

 Hint: Find some powers of p dividing the factorial.

 (c) Let $p \geq 3$ be prime. Show that $p^2 | (p^2 - 1)!$.

 Hint: Now you need to consider multiples of p as well.

 RMK Note that $3! \not\equiv 0 \pmod{4}$. Ensure that your solution to (c) used the fact that $p \neq 2$ at some point!
The Euler Function and RSA

Recall that \(\varphi(m) = \# \{1 \leq a \leq m \mid (a, m) = 1\} \), and that for \(p \) prime \(\varphi(p) = p - 1 \).

6. Explicit calculations.
 (a) Calculate \(\varphi(4), \varphi(9), \varphi(12), \varphi(15) \).
 (b) Show that \(\varphi(12) = \varphi(3)\varphi(4) \) and \(\varphi(15) = \varphi(3)\varphi(5) \) but that \(\varphi(4) \neq \varphi(2)\cdot\varphi(2) \), \(\varphi(9) \neq \varphi(3)\cdot\varphi(3) \).

7. Let \(p, q \) be distinct primes and let \(m = pq \).
 (a) Show that there are \(p + q - 1 \) integers \(1 \leq a \leq m \) which are not relatively prime to \(m \).
 Hint: What are the possible values of \(\gcd(a, m) \)? For which \(a \) do they occur?
 (b) Show that \(\varphi(pq) = (p-1)(q-1) \).
 RMK This means in particular that \(\varphi(pq) = \varphi(p)\varphi(q) \).
 (c) Give a formula for \(p + q \) in terms of \(m, \varphi(m) \).
 SUPP Show how to factor \(m \) given \(m, \varphi(m) \).

8. Fix an integer \(m \) and two positive integers \(d, e \) so that \(de \equiv 1 (\varphi(m)) \). Define functions \(E, D \) by \(E(x) = x^e \mod m \) and \(D(y) = y^d \mod m \) (in other words, raise to the appropriate power and keep remainder \(\mod m \)).
 (a) Let \(M = \{1 \leq a \leq m \mid (a, m) = 1\} \) be the set of invertible residues (\(\varphi(m) \) is the size of this set). Show that both \(D, E \) map the set \(M \) into itself.
 (b) Show that for any \(x, y \in M \), \(D(E(x)) = x \) and \(E(D(y)) = y \).
 Hint: Euler’s Theorem.

Supplementary problems (not for submission)

A. (The binomial formula) Prove by induction on \(n \geq 0 \) that for all \(x, y \),
 \[
 (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.
 \]

B. Let \(p \) be an odd prime.
 (a) Show that \((p - 1)! \equiv (-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2} \right)!^2 (p) \). Conclude that if \(p \equiv 1 (4) \) then there is \(a \in \mathbb{Z} \) such that \(a^2 \equiv -1 (p) \).
 (b) Conversely, assume that \(a^2 \equiv -1 (p) \) for some integer \(a \). Show that the order of \(a \mod p \) is exactly 4 and conclude that \(p \equiv 1 (4) \).

C. Let \(p \) be a prime and let \(0 \leq k < p \). Show that \((\frac{p-1}{k}) \equiv (-1)^k (p) \).