MATH 100: MORE EXAMPLES FOR L'HÔPITAL'S RULE

1. Limits of the form 1^{∞}

We discuss three examples to show that limits of that form can have many possible limits.
(1) Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\sqrt{x}}$.

Solution 1: we take the logarithm. $\log \left(\left(1+\frac{1}{x}\right)^{\sqrt{x}}\right)=\sqrt{x} \log \left(1+\frac{1}{x}\right)$.
Then

$$
\lim _{x \rightarrow \infty} \sqrt{x} \log \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{x^{-1 / 2}}
$$

is an indeterminate form $\left(\log \left(1+\frac{1}{x}\right) \underset{x \rightarrow \infty}{\longrightarrow} \log (1+0)=0\right.$ while $x^{-1 / 2}=$ $\frac{1}{\sqrt{x}} \xrightarrow[x \rightarrow \infty]{ } 0$). We now apply l'Hôpital:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{x^{-1 / 2}} & =\lim _{x \rightarrow \infty} \frac{\left(-\frac{1}{x^{2}}\right)\left(\frac{1}{1+\frac{1}{x}}\right)}{-\frac{1}{2} x^{-3 / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{x^{2} \cdot x^{-3 / 2}} \cdot \frac{1}{1+\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}\left(1+\frac{1}{x}\right)}=0
\end{aligned}
$$

It follows that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\sqrt{x}}=e^{0}=1$.
Solution 2: we take the logarithm. $\log \left(\left(1+\frac{1}{x}\right)^{\sqrt{x}}\right)=\sqrt{x} \log \left(1+\frac{1}{x}\right)$.
Then

$$
\lim _{x \rightarrow \infty} \sqrt{x} \log \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{x^{-1 / 2}}
$$

is an indeterminate form $\left(\log \left(1+\frac{1}{x}\right) \xrightarrow[x \rightarrow \infty]{\longrightarrow} \log (1+0)=0\right.$ while $x^{-1 / 2}=$ $\frac{1}{\sqrt{x}} \xrightarrow[x \rightarrow \infty]{ } 0$). We now change variables to $u=\frac{1}{x}$ so that $u \rightarrow 0^{+}$and apply l'Hôpital:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{x^{-1 / 2}} & =\lim _{u \rightarrow 0^{+}} \frac{\log (1+u)}{u^{1 / 2}} \\
& =\lim _{u \rightarrow 0^{+}} \frac{1 /(1+u)}{\frac{1}{2} u^{-1 / 2}}=\lim _{u \rightarrow 0^{+}} \frac{2 u^{1 / 2}}{1+u}=\frac{2 \cdot 0^{1 / 2}}{1+0}=0
\end{aligned}
$$

It follows that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\sqrt{x}}=e^{0}=1$.
(2) Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.

Solution: we take the logarithm. $\log \left(\left(1+\frac{1}{x}\right)^{x}\right)=x \log \left(1+\frac{1}{x}\right)$. Then

$$
\lim _{x \rightarrow \infty} x \log \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{1 / x}=\lim _{u \rightarrow 0^{+}} \frac{\log (1+u)}{u}
$$

is an indeterminate form $(\log (1)=0)$. By l'Hôpital,

$$
\lim _{u \rightarrow 0^{+}} \frac{\log (1+u)}{u}=\lim _{u \rightarrow 0^{+}} \frac{1 /(1+u)}{1}=\frac{1}{1+0}=1 .
$$

It follows that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\sqrt{x}}=e^{0}=1$.
(3) Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x^{2}}$.

Solution: we take the logarithm. $\log \left(\left(1+\frac{1}{x}\right)^{x^{2}}\right)=x^{2} \log \left(1+\frac{1}{x}\right)$.
Then

$$
\lim _{x \rightarrow \infty} x^{2} \log \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\log \left(1+\frac{1}{x}\right)}{1 / x^{2}}=\lim _{u \rightarrow 0^{+}} \frac{\log (1+u)}{u^{2}}
$$

is an indeterminate form $(\log (1)=0)$. By l'Hôpital,

$$
\lim _{u \rightarrow 0^{+}} \frac{\log (1+u)}{u^{2}}=\lim _{u \rightarrow 0^{+}} \frac{1 /(1+u)}{2 u}
$$

Now $\lim _{u \rightarrow 0} \frac{1}{1+u}=0$ while $\lim _{u \rightarrow 0^{+}} \frac{1}{u}=\infty$ so

$$
\lim _{x \rightarrow \infty} \log \left(\left(1+\frac{1}{x}\right)^{x^{2}}\right)=\lim _{u \rightarrow 0^{+}} \frac{1 /(1+u)}{2 u}=\infty
$$

and hence

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x^{2}}=\lim _{x \rightarrow \infty} \exp \left(\log \left(\left(1+\frac{1}{x}\right)^{x^{2}}\right)\right)=\infty
$$

