1. Finding the expansions

(1) \(f(x) = x^3 + 3x + 1 \), to third order. \(f'(x) = 3x^2 + 3 \), \(f''(x) = 6x \), \(f'''(x) = 6 \), all further derivatives are zero.

(a) Expand about \(x = 1 \): \(f(1) = 5 \), \(f'(1) = 6 \), \(f''(1) = 6 \), \(f'''(1) = 6 \). Get (actual equality since \(f \) is a polynomial)

\[
f(x) = 5 + 6(x - 1) + \frac{6}{2!} (x - 1)^2 + \frac{6}{3!} (x - 1)^3.
\]

(b) Expand about \(x = 5 \): \(f(5) = 141 \), \(f'(5) = 78 \), \(f''(5) = 30 \), \(f'''(5) = 6 \). Get (actual equality since \(f \) is a polynomial)

\[
f(x) = 141 + 78(x - 1) + \frac{30}{2!} (x - 1)^2 + \frac{6}{3!} (x - 1)^3.
\]

(2) Let’s try \(\sin(11x + x^2) \) to third order. We know \(\sin(u) \approx u - \frac{u^3}{3!} \) to third order. Now \(11x + x^2 \) vanishes at zero so we can plug in and get:

\[
\sin(11x + x^2) \approx (11x + x^2) - \frac{(11x + x^2)^3}{3!}
\]

\[
= 11x + x^2 - \frac{1}{6} (11^3 x^3 + 3(11x)^2 x^2 + 3(11x)(x^2)^2 + (x^2)^3)
\]

\[
\approx 11x + x^2 - \frac{1331}{6} x^3
\]

to third order (the \(x^4 \), \(x^5 \), \(x^6 \) terms are negligible when working to third order).

(3) Let’s try \(\sin(11x + 5) \) to third order. (aside: \(11^2 = 121, 11^3 = 1331 \)).

(a) About \(x = -\frac{5}{11} \), this reads \(\sin \left(11 \left(x - \left(-\frac{5}{11} \right) \right) \right) \) we plug in: \(11(x - a) - \frac{(11(x-a))^3}{3!} = 11 \left(x + \frac{5}{11} \right) + \frac{1331}{6} \left(x + \frac{5}{11} \right)^3 \).

(b) About \(x = 0 \), using derivatives. The first three are \(11 \cos(11x + 5), -11^2 \sin(11x+5), -11^3 \cos(11x+5) \) at \(0 \) we get \(\sin(5), 11 \cos(5), -121 \sin(5), -1331 \cos(5) \) so to third order about \(x = 0 \),

\[
\sin(11x + 5) \approx \sin(5) + 11 \cos(5) \cdot x - \frac{1121 \sin(5)}{2} x^2 - \frac{1331 \cos(5)}{6} x^3.
\]

(c) About \(x = 0 \), using addition formula and substitution. Recall \(\sin((11x + 5) = \sin(5) \cos(11x) + \cos(5) \sin(11x) \). To third order, \(\cos(u) = 1 - \frac{u^2}{2} \),

\[
\sin(u) = u - \frac{u^3}{3}
\]

so

\[
\sin(11x + 5) \approx \sin(5) \left[1 - \frac{(11x)^2}{2} \right] + \cos(5) \left[(11x) - \frac{(11x)^3}{3!} \right]
\]

\[
= \sin(5) + 11 \cos(5) \cdot x - \frac{121 \sin(5)}{2} x^2 - \frac{1331 \cos(5)}{6} x^3
\]
after rearranging.

(4) \(E(v) = \frac{m c^2}{\sqrt{1-v^2/c^2}} \)
the expression for the energy of a relativistic particle of mass \(m \) and velocity \(v \). Let’s expand to second order, to see what happens at velocities much smaller than the speed of light \(c \).

(a) By the chain rule, \(E'(v) = mc^2 \left(\left(\frac{1}{2} \right) \left(1 - \frac{v^2}{c^2} \right)^{-3/2} \right) \left(-\frac{2v}{c^2} \right) \)
so \(E'(0) = 0 \). Next, by the quotient rule
\[
E''(v) = \frac{1 \cdot \left(1 - \frac{v^2}{c^2} \right)^{3/2} + v^2/2 \cdot \left(1 - \frac{v^2}{c^2} \right)^{-1/2} \cdot \left(-\frac{2v}{c^2} \right)}{(1 - \frac{v^2}{c^2})^3}
\]
\[
= \frac{m}{(1 - \frac{v^2}{c^2})^{3/2}} - 3m \frac{v^2/c^2}{(1 - \frac{v^2}{c^2})^{5/2}}
\]

We get \(E''(0) = m \). The second-order expansion is therefore
\[
E(v) \approx mc^2 + \frac{1}{2} mv^2,
\]
recovering the classical kinetic energy at low velocities.

(b) Different approach: let \(u = \frac{v^2}{c^2} \). Get \(E(u) = mc^2 (1 - u)^{-1/2} \). Again \(E(0) = mc^2 \), also
\[
\frac{dE}{du} = mc^2 \frac{1}{2} (1 - u)^{-3/2}
\]
\[
\frac{d^2E}{du^2} = mc^2 \frac{3}{2} \frac{1}{2} (1 - u)^{-5/2}
\]
\[
\frac{d^3E}{du^3} = mc^2 \frac{3 \cdot 5}{2 \cdot 2} (1 - u)^{-7/2}
\]
and so on. Get:
\[
E(u) = mc^2 \left[1 + \frac{1}{2} u + \frac{1}{2!} \frac{1 \cdot 3}{2 \cdot 2} u^2 + \frac{1}{3!} \frac{1 \cdot 3 \cdot 5}{2 \cdot 2 \cdot 2} u^3 + \cdots \right]
\]
so plugging in \(u = \frac{v^2}{c^2} \), get
\[
E(v) = mc^2 \left[1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \left(\frac{v^2}{c^2} \right)^2 + \frac{5}{16} \left(\frac{v^2}{c^2} \right)^3 + \cdots \right]
\]
\[
= mc^2 + \frac{1}{2} mv^2 + mc^2 \left[\frac{3}{8} \left(\frac{v^2}{c^2} \right)^2 + \frac{5}{16} \left(\frac{v^2}{c^2} \right)^3 + \cdots \right].
\]

Remark: It is very useful to keep the rest of the series in terms of the small parameter \(\frac{v^2}{c^2} \) instead of in terms of \(v^2 \). We get the series of relativistic corrections to the classical Newtonian formula \(\frac{1}{2} mv^2 \).

(5) Example: Suppose we know \(f'(x) = f(x) \) and \(f(0) = 1 \). What is the Taylor expansion?

Solution: If \(f'(x) = f(x) \) then \(f''(x) = f'(x) = f(x) \) and \(f^{(k+1)}(x) = \frac{d}{dx} f^{(k)}(x) = \frac{d}{dx} f(x) = f(x) \) by induction. So \(f^{(k)}(0) = 1 \) for all \(k \). So
\[
f(x) \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots
\]
Remark: this looks silly: we know that $f'(x) = e^x$. But the same approach applies to $f'(x) = f(x) + f^2(x)$. Then $f'(0) = 2$, and

$$f''(x) = f'(x) + 2f(x)f'(x) = f(x) + f^2(x) + 2f(x) \left(2(f(x) + f^2(x)) \right) = f(x) + 3f^2(x) + 2f^3(x)$$

so $f''(0) = 6$ and we get to second order $f(x) \approx 1 + 2x + 3x^2$ with no formula for f.