Math 100: Summary of Limits

September 10, 2014

- Limit laws: limits respect arithmetic operations and common functions, as long as everything is well-defined.

Ideas for evaluating $\lim _{x \rightarrow a} f(x)$.

1. Is the expression well-behaved at a ? If so, we can evaluate it.
2. Do we need to examine the limits from left and right separately?

- If the one-sided limits are different, the two-sided "limit as $x \rightarrow a$ " does not exist.

3. Does the function blow up? (e.g. $\frac{\sqrt{1+x}}{x}$ near $x=0$?)

- If the magnitude is going to ∞, check the sign at both sides (here, the limit as $x \rightarrow 0+$ is $+\infty$ but as $x \rightarrow 0-$ is $-\infty)$

4. Does the function oscillate between different values, so there is no limit? (example: $\sin \left(\frac{\pi}{x}\right)$ near zero).
5. The expression looks like $\frac{0}{0}$, many things can happen.
(a) Can we apply a trick? We saw two in class:
i. Cancel factors in numerator and denominator. For example, if $x \neq 3$ then

$$
\frac{x-3}{x^{2}-x-6}=\frac{1}{x+2}
$$

ii. Rationalize roots. For example,

$$
\begin{aligned}
\frac{\sqrt{\cos x+x}-\sqrt{\cos x-x}}{x} & =\frac{\sqrt{\cos x+x}-\sqrt{\cos x-x} \cdot \frac{\sqrt{\cos x+x}+\sqrt{\cos x-x}}{\sqrt{\cos x+x}+\sqrt{\cos x-x}}}{x} \\
& =\frac{(\sqrt{\cos x+x})^{2}-(\sqrt{\cos x-x})^{2}}{x(\sqrt{\cos x+x}+\sqrt{\cos x-x})} \\
& =\frac{(\cos x+x)-(\cos x-x)}{x(\sqrt{\cos x+x}+\sqrt{\cos x-x})}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 x}{x} \cdot \frac{1}{\sqrt{\cos x+x}+\sqrt{\cos x-x}} \\
& =\frac{2}{\sqrt{\cos x+x}+\sqrt{\cos x-x}}
\end{aligned}
$$

thus

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{\cos x+x}-\sqrt{\cos x-x}}{x} & =\lim _{x \rightarrow 0} \frac{2}{\sqrt{\cos x+x}+\sqrt{\cos x-x}} \\
& =\frac{2}{\sqrt{\cos 0+0}+\sqrt{\cos 0-0}}=\frac{2}{\sqrt{1}+\sqrt{1}}=1
\end{aligned}
$$

6. Can we sandwich the function between others whose limits we can calculate?

$$
-1 \leq \sin \frac{1}{x} \leq 1
$$

SO

$$
-x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2}
$$

and $\lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0}\left(x^{2}\right)=0$ so

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0
$$

More tips:

1. Don't forget the "limit" symbol. Compare the following:

$$
\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\frac{e^{x}(x-1)}{(x-1)(x+2)}=\frac{e^{x}}{x+2}=\frac{e}{3} \quad(\text { wrong })
$$

and

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{(x-1)(x+2)}=\lim _{x \rightarrow 1} \frac{e^{x}}{x+2}=\frac{\lim _{x \rightarrow 1} e^{x}}{\lim _{x \rightarrow 1}(x+2)}=\frac{e}{3} \quad \text { (correct) } \\
\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{e^{x}}{x+2}=\frac{e}{3} \quad \text { (succint but correct) }
\end{gathered}
$$

(the problem with the first attempt is that the sign = means "really equal" not "the next step in the calculation is").

