Name:

December 2007
Mathematics 100/180
Page 8 of 12 pages
[16] 4. Let $f(x)=x \sqrt{3-x}$.
(a) (2 marks) Find the domain of $f(x)$.

Answer
(b) (4 marks) Determine the x-coordinates of the local maxima and minima (if any) and intervals where $f(x)$ is increasing or decreasing.
(c) (2 marks) Determine intervals where $f(x)$ is concave upwards or downwards, and the x-coordinates of inflection points (if any). You may use, without verifying it, the formula $f^{\prime \prime}(x)=(3 x-12)(3-x)^{-3 / 2} / 4$.

Name:

Question 4 continued
(d) (2 marks) There is a point at which the tangent line to the curve $y=f(x)$ is vertical. Find this point.

Answer

(e) (2 marks) The graph of $y=f(x)$ has no asymptotes. However, there is a real number a for which $\lim _{x \rightarrow-\infty} \frac{f(x)}{|x|^{a}}=-1$. Find the value of a.

Answer
(f) (4 marks) Sketch the graph of $y=f(x)$, showing the features given in items (a) to (d) above and giving the (x, y) coordinates for all points occurring above and also all x-intercepts.
[14] 4. Let

$$
f(x)=\left\{\begin{array}{cl}
\frac{4}{\pi} \tan ^{-1} x, & \text { if } x \geq 1 \\
2-x^{4}, & \text { if } x<1
\end{array}\right.
$$

[Note: Another notation for $\tan ^{-1}$ is arctan.]
(a) (3 marks) Show that $f(x)$ is continuous at $x=1$.
(b) (1 mark) Determine the equations of any asymptotes (horizontal, vertical or slant).
(c) (4 marks) Determine all critical numbers, open intervals where f is increasing or decreasing, and the x-coordinates of all local maxima or local minima (if any).

Question 4 continued
(d) (2 marks) Determine open intervals where the graph of f is concave upwards or concave downwards, and the x-coordinates of all inflection points (if any).
(e) (4 marks) Sketch the curve $y=f(x)$, showing all the features given in items (a) to (d) above and giving the (x, y) coordinates for all points occurring above (if any).

