MATH 100 - WORKSHEET 27 MORE MVT

1. The Mean Value Theorem

Theorem. Let f be defined differentiable on $[a, b]$. Then there is $a<c<b$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$. Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(1) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$
(2) Suppose that $f^{\prime}(x)>0$ for all $a<x<b$. Show that f is strictly increasing in $[a, b]$. (Hint: consider the sign of $\left.\frac{f(b)-f(a)}{b-a}\right)$.
(3) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)

Corollary (Monotone function test). Let f be a function such that f^{\prime} exists and is continuous on $[a, b]$. Suppose that $f^{\prime}(x) \neq 0$ for $a<x<b$. Then f has an inverse function on this interval.
(1) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.
(2) Let $x>0$. Show that $e^{x}>1+x$ and that $\ln (1+x) \leq x$.

