FOURIER SERIES AND THE POISSON SUMMATION FORMULA
(NOTES FOR MATH 613)
LIOR SILBERMAN

NOTATION

Write S^1 for the group $\{z \in \mathbb{C}^\times \mid |z| = 1\}$. For $z \in \mathbb{C}$ write $e(z) \overset{\text{def}}{=} e^{2\pi iz}$. All group homomorphisms are assumed to be continuous.

For a topological space X write $C(X)$ for the space of \mathbb{C}-valued continuous functions on X, $C_c(X)$ for the subspace of functions of compact support. If μ is a Radon measure on X and $1 \leq p \leq \infty$ write $L^p(\mu)$ for the usual space of p-integrable functions. We sometimes write $L^p(X)$ when the measure is clear (and note that if $L^p(f \mu) = L^p(\mu)$ if f is bounded).

When X is compact, $C(X)$ is complete in the L^∞ norm and (Stone-Weierstrass) a subalgebra $\mathcal{A} \subset C(X)$ is dense if it separates points, does not have a common zero, and is closed under conjugation.

On a manifold X write $C^j(X)$ for the space functions differentiable j times with continuous derivatives of order j, $C^\infty(X) = \cap_j C^j(X)$, and $C^\infty_c(X) = C^\infty(X) \cap C_c(X)$.

On \mathbb{R}^n say f is of rapid decay if $f(x) (1 + \|x\|)^N$ is bounded for all N. Say $f \in C^\infty(\mathbb{R}^n)$ is of Schwartz class if f and all its derivatives are of rapid decay.

1. FOURIER SERIES AND FOURIER INVERSION ON \mathbb{R}^n/Λ

Let V be an inner product space, fix a lattice $\Lambda < V$, and write \mathbb{T} for the torus V/Λ. Let Λ^* be the dual lattice.

Definition 1. $L^2(\mathbb{T})$ and $L^2(\Lambda^*)$ will denote the spaces with respect to the Haar probability measure and counting measure, respectively.

Problem 2. (Functional analysis)

1. Show that $C(\mathbb{T})$ is dense in $L^2(\mathbb{T})$.
2. Show that $C_c(\Lambda^*)$ is dense in $L^2(\Lambda^*)$.

Problem 3. (Trigonometric polynomials)

1. Show that $k \mapsto (x \mapsto e(kx))$ is an injective group homomorphism $\Lambda^* \hookrightarrow \text{Hom}(\mathbb{T}, S^1)$.
2. Show that the characters $e(kx)$ are linearly independent in $C(\mathbb{T})$.

 Hint: Evaluate a linear combination $\sum a_k e(kx) = 0$ of shortest length at two different values of x.
3. Let \mathcal{P} be the algebra of continuous functions on \mathbb{T} generated by the $e(kx)$. Show that \mathcal{P} is simply the linear span of these characters.
4. Let $x \in \mathbb{T}$ be non-zero. Show that there exists $k \in \Lambda^*$ such that $e(kx) \neq 1$.

 Hint: $\Lambda^{**} = \Lambda$.

1
Problem 8. (Orthogonality of characters)

(1) For \(k \in \Lambda^* \) show that
\[
\frac{1}{\text{vol}(\mathbb{T})} \int_{\mathbb{T}} e(kx) \, dx = \begin{cases}
1 & k = 0 \\
0 & k \neq 0.
\end{cases}
\]

(2) Conclude that for \(k, l \in \Lambda^* \) one has
\[
\frac{1}{\text{vol}(\mathbb{T})} \int_{\mathbb{T}} e(kx) e(lx) \, dx = \delta_{kl}.
\]

Definition 5. For \(g \in C_c(\Lambda^*) \) set \(\hat{g}(x) = \sum_{k \in \Lambda^*} e(kx) \).

Problem 6. (The inverse map) We show that \(g \mapsto \hat{g} \) extends to an isometric isomorphism \(L^2(\Lambda^*) \to L^2(\mathbb{T}) \).

(1) (Parseval’s identity) Show that \(\|\hat{g}\|_{L^2(\mathbb{T})} = \|g\|_{L^2(\Lambda^*)} \), that is that
\[
\frac{1}{\text{vol}(\mathbb{T})} \int_{\mathbb{T}} |\hat{g}(x)|^2 \, dx = \sum_{k \in \Lambda^*} |g(k)|^2.
\]

(2) Since \(C_c(\Lambda^*) \) is dense in \(L^2(\Lambda^*) \), conclude that \(g \mapsto \hat{g} \) extends to an isometric embedding \(L^2(\Lambda^*) \to L^2(\mathbb{T}) \), and show that the image is a closed subspace.

(3) Let \(f \in L^2(\mathbb{T}) \) be of norm one and orthogonal to the image of this map. Approximating \(f \) by a trigonometric polynomial show that \(\langle f, f \rangle = 0 \) and derive a contradiction.

Definition 7. For \(f \in L^2(\mathbb{T}) \) and \(k \in \Lambda^* \) set \(\hat{f}(k) = \frac{1}{\text{vol}(\mathbb{T})} \int_{\mathbb{T}} f(x) e(-kx) \, dx \).

Problem 8. (The direct map)

(1) Show that \(|\hat{f}(k)| \leq \|f\|_{L^2(\mathbb{T})} \). Conclude that \(|\hat{f}(k)| \leq \|f\|_{L^\infty(\mathbb{T})} \) also.

(2) For \(g \in C_c(\Lambda^*) \) show that \(\hat{g}(k) = g(k) \). Show that the same holds for \(g \in L^2(\Lambda^*) \).

(3) Conclude that the map \(f \mapsto \hat{f} \) takes values in \(L^2(\Lambda^*) \) and is the inverse to the map \(g \mapsto \hat{g} \).

Problem 9. (Smooth functions)

(1) Integrating by parts, show that for \(k \neq 0 \) and \(f \in C^2(\mathbb{T}) \) we have
\[
|\hat{f}(k)| \leq \frac{1}{|2\pi k|} \| \triangle f \|_{L^\infty(\mathbb{T})}.
\]

(2) Assume now that \(f \in C^\infty(\mathbb{T}) \). Show that \(F^{(\alpha)}(x) = \sum_{k \in \Lambda^*} (2\pi i k)^\alpha \hat{f}(k) e(kx) \) converges uniformly for all multi-indices \(\alpha \).

(3) Integrating term-by-term show that \(F^{(\alpha)} \) is the \(\alpha \)th derivative of \(F^{(0)} \).

(4) Show that \(F^{(0)} = f \) pointwise.

2. The Poisson Summation Formula

Definition 10. For \(f \in L^1(\mathbb{V}) \) and \(k \in \mathbb{V}^* \) set \(\hat{f}(k) = \int_{\mathbb{V}} f(x) e(-kx) \, dx \) and call this the Fourier transform of \(f \).

Problem 11. (The Fourier transform) Let \(f \in L^1(\mathbb{R}^n) \)

(1) Show that \(\|\hat{f}\|_{L^\infty(\mathbb{V}^*)} \leq \|f\|_{L^1(\mathbb{V})} \).

(2) Show that \(\hat{f} \in C(\mathbb{V}) \).

Hint: The bounded convergence theorem.

(3) On \(V = \mathbb{R} \) let \(f = \exp(-|x|) \). Show that \(\hat{f}(k) = \frac{2}{1 + 4\pi^2 k^2} \).
(4) Let \(\Re(\alpha) > 0 \) and let \(f(x) = \exp \{ -\pi \alpha x^2 \} \). Show that \(\hat{f}(k) = \sqrt{\frac{1}{\alpha}} \exp \{ -\frac{\pi}{\alpha} k^2 \} \) where we take the branch of the square root with a cut at \((-\infty, 0]\).

\[\text{Hint: Shift contours to reduce the problem to the known formula} \int_{\mathbb{R}} \exp \left(-\alpha x^2 \right) dx = \sqrt{\frac{\pi}{\alpha}}. \]

(5) Let \(Q \in M_n(\mathbb{R}) \) be a positive-definite symmetric matrix, and let \(f(x) = \exp \left(-2\pi \langle x | Q | x \rangle \right) \).

Show that \(\hat{f}(k) = 2^{-n/2} (\det Q)^{-1/2} \exp \left\{ -2\pi \langle k | Q^{-1} | k \rangle \right\} \).

Finally, let \(f \in C^\infty(\mathbb{R}^n) \) and its derivatives decay polynomially, quickly enough that \(\Pi_A f \) converges absolutely to a smooth function.

Problem 12. (The Poisson Summation Formula) Let \(f \in L^1(\mathbb{R}^n) \) decay quickly enough that \(\Pi_A f \in \mathbb{C}(V/\Lambda) \).

(1) For \(k \in \Lambda^* \) show that \(\hat{\Pi_A f}(k) = \frac{1}{\text{vol}(\Lambda)} \hat{f}(k) \) where the first hat is the Fourier transform on \(\mathbb{T} \) and the second is the one on \(V \).

(2) Show that \(\Pi_A f(x) = \frac{1}{\text{vol}(\Lambda)} \sum_{k \in \Lambda^*} \hat{f}(k) e(kx) \). Conclude that:

\[\sum_{v \in \Lambda} f(v) = \frac{1}{\text{vol}(\Lambda)} \sum_{k \in \Lambda^*} f(k). \]

3. **The Fourier transform and Fourier inversion on \(\mathbb{R}^n \)**

Problem 13. (The Schwartz class) Let \(f \in S(V) \), \(\Lambda < V \) a fixed lattice.

(1) Differentiating under the integral sign show that \(\hat{f}(k) \) is smooth.

(2) Integrating by parts show that then \(\hat{f} \) is of rapid decay.

(3) Combining the two calculations show that \(\hat{f} \in S(V) \).

(4) Applying the PSF to \(f \) with the lattice \(r\Lambda \) and taking \(r \to \infty \) show that

\[f(0) = \int_{V^*} \hat{f}(k) dk. \]

(5) Let \(g(x) = f(x+y) \). Show that \(\hat{g}(k) = \hat{f}(k)e(ky) \) and conclude that

\[f(x) = \int_{V^*} \hat{f}(k)e(kx) dk. \]

(6) Use the same methods to establish *Parseval’s identity*

\[\|f\|_{L^2(V)} = \|\hat{f}\|_{L^2(V^*)}. \]

(7) Conclude that the Fourier transform extends to a bijective isometry \(\mathcal{F} : L^2(V) \to L^2(V^*) \).