
Traveling Waves in a bistable 
Reaction-Diffusion System	




Wave phenomena in RD systems	
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f (u) = au(u −1)(α − u) 0 <α <1

f (u) = −u + H(u −α) 0 <α <1

With f cubic: 	
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Piecewise linear:	
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U is the shape of the wave, z is the position along the wave front	




Bistable well-mixed system	
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With diffusion	
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Moving Wave	
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Wave profile	
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Traveling wave coordinates: z=x-ct,  U(z)=u(x,t)	
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u=0	




What is the wave profile?	

Traveling wave coordinates: z=x-ct,  U(z)=u(x,t)	

Scaling and transformation of coordinates:	
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Uzz − cUz + f (U) = 0

Uz =W
Wz = cW − f (U)

2nd order (nonlin) ODE	


Equivalent ODE system:	

We can study this qualitatively in the 
UW phase plane to get insight into the 
shape of the wave.	




Example:	

f(u)=u(1-u)(u- α)	


€ 

∂u
∂t

= f (u) +
∂ 2u
∂x 2

W

U	
 U	


W

W’=0	


U’=0	


€ 

Uzz − cUz + f (U) = 0

Uz =W
Wz = cW − f (U)

(Rescaled)	




Xpp file	

# bistable.ode	

# classic example of a wave joining 0 and 1	

#  u_t = u_xx + u(1-u)(u-a)	

#	

# -cu'=u''+u(1-u)(u-a)	

f(u)=u*(1-u)*(u-a)	

par c=0,a=.25	

u'=up	

up'=-c*up-f(u)	

init u=1	

@ xp=u,yp=up,xlo=-.5,xhi=1.5,ylo=-.5,yhi=.5	

done	


Bard Ermentrout’s XPP file	


Bistable.ode	




Interpretation:	

Each trajectory describes how U  (and W) vary as z increases over range -∞< z < ∞	


In bio applications: u= density>0, so we want:  a positive bounded wave: Look for a  
positive bounded trajectory connecting two steady states.	


W

U	
U	




Here is a heteroclinic trajectory:	
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Here it is on its own:	
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And here is the shape of the wave 
it represents:	
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What is the speed of the wave?	

•  A reaction-diffusion equation with “bistable” kinetics will 
admit a traveling wave that looks like a moving “front”, with 
high level at back, and low level ahead.	


•  But how fast does the wave move and does it ever stop?	


There is a cute trick that allows us to answer 
this question for arbitrary function f(u).	




Determining wave speed	
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The wave speed:	




Finally..	
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u=1	
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f(u)=u(1-u)(u- α)	




Result!	


But what does this tell us????	




Which way does it move?	
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Always 
positive	




Which way does it move?	
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Which way does it move?	
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Which way does it move?	
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We can now answer the question:	


Under what conditions would 
the wave stop?	




Wave stops:	
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Speed is zero if:	


i.e.: if :	




Geometry of stalled wave:	
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Maxwell condition:	
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“Equal areas”  	


“Maxwell condition”:	
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Can we get an explicit solution 
for the wave speed?	




Explicit solution?	

In some special cases, e.g. f(u) cubic or piecewise 
linear, can calculate wave speed fully by this method. 	


(See Keener & Sneyd p 274, Murray p 305)	
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f (u) = au(u −1)(α − u) 0 <α <1For 	


Speed of the wave is: 	
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a
2
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Implications:	

Wave moves right (c>0) if α<1/2            Moves left (c<0) if α>1/2 	


Wave stops (c=0) precisely for one value of the parameter, 	

	
 	
 	
α=1/2 	
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f (u) = au(u −1)(α − u) 0 <α <1


