Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Traveling Waves in a bistable Reaction-Diffusion System

Wave phenomena in RD systems

Keener & Sneyd (1998) Mathematical Physiology; p 270-275

U is the shape of the wave, z is the position along the wave front

Bistable well-mixed system

 $f(u) = au(u-1)(\alpha-u) \quad 0 < \alpha < 1$

With diffusion

u=1 u=0 x

 $f(u) = au(u-1)(\alpha - u) \quad 0 < \alpha < 1$

Moving Wave

Wave profile

Traveling wave coordinates: z=x-ct, U(z)=u(x,t)

What is the wave profile?

Traveling wave coordinates: z=x-ct, U(z)=u(x,t)

Scaling and transformation of coordinates:

$$\frac{\partial}{\partial t} \rightarrow -c \frac{d}{dz} \qquad \frac{\partial}{\partial x} \rightarrow \frac{d}{dz}$$

$$E \qquad \qquad \frac{\partial u}{\partial t} = f(u) + \frac{\partial^2 u}{\partial x^2} \rightarrow -c \frac{dU}{dz} = f(U) + \frac{d^2 U}{dz^2} \qquad \text{ODE}$$

PDE

2nd order (nonlin) ODE $U_{zz} - cU_z + f(U) = 0$

Equivalent ODE system:

$$\begin{cases} U_z = W \\ W_z = cW - f(U) \end{cases}$$

We can study this qualitatively in the UW phase plane to get insight into the shape of the wave.

 $\frac{\partial u}{\partial t} = f(u) + \frac{\partial^2 u}{\partial x^2}$ (Rescaled)

Example: $f(u)=u(1-u)(u-\alpha)$

$$U_{zz} - cU_z + f(U) = 0$$

 $U_z = W$ $W_z = cW - f(U)$

Bard Ermentrout's XPP file

Bistable.ode

Xpp file

```
# bistable.ode
```

```
# classic example of a wave joining 0 and 1
```

```
# u_t = u_x + u(1-u)(u-a)
```

```
#
```

```
\# -cu'=u''+u(1-u)(u-a)
```

```
f(u)=u^{*}(1-u)^{*}(u-a)
```

```
par c=0,a=.25
```

```
u'=up
```

```
up'=-c*up-f(u)
```

```
init u=1
```

```
@ xp=u,yp=up,xlo=-.5,xhi=1.5,ylo=-.5,yhi=.5
done
```

Interpretation:

Each trajectory describes how U (and W) vary as z increases over range $-\infty < z < \infty$

In bio applications: u = density>0, so we want: a positive bounded wave: Look for a positive bounded trajectory connecting two steady states.

Here is a heteroclinic trajectory:

U

And here is the shape of the wave it represents:

Z

What is the speed of the wave?

• A reaction-diffusion equation with "bistable" kinetics will admit a traveling wave that looks like a moving "front", with high level at back, and low level ahead.

• But how fast does the wave move and does it ever stop?

There is a cute trick that allows us to answer this question for arbitrary function f(u).

Determining wave speed

$$\frac{\partial u}{\partial t} = f(u) + \frac{\partial^2 u}{\partial x^2}, \quad z = x - ct$$
$$-c \frac{dU}{dz} - f(U) = \frac{\partial^2 U}{dz^2}$$

Multiply by dU/dz,

Z

$$-c\left(\frac{dU}{dz}\right)^{2} - f(U)\left(\frac{dU}{dz}\right) = \frac{1}{2}\frac{d}{dz}\left(\frac{dU}{dz}\right)^{2} \quad \text{integrate},$$
$$-c\int_{-\infty}^{\infty} \left(\frac{dU}{dz}\right)^{2} dz - \int_{uback}^{ufront} f(U)dU = \frac{1}{2}\int_{-\infty}^{\infty} \frac{d}{dz}\left(\frac{dU}{dz}\right)^{2} = 0$$
$$-c\int_{-\infty}^{\infty} \left(\frac{dU}{dz}\right)^{2} dz = \int_{uback}^{ufront} f(U)dU$$

The wave speed:

Finally..

$$c = -\int_{uback}^{ufront} f(U) dU \bigg/ \int_{-\infty}^{\infty} \bigg(\frac{dU}{dz}\bigg)^2 dz$$

 $f(u)=u(1-u)(u-\alpha)$

Result!

$$c = -\int_{0}^{1} f(U) dU \bigg/ \int_{-\infty}^{\infty} \bigg(\frac{dU}{dz}\bigg)^{2} dz$$

But what does this tell us????

We can now answer the question:

Under what conditions would the wave stop?

Wave stops:

Speed is zero if:
$$0 = c = -\int_{0}^{1} f(U) dU / \int_{-\infty}^{\infty} \left(\frac{dU}{dz}\right)^{2} dz$$

i.e.: if :
$$\int_{0}^{1} f(U) dU = 0$$

Geometry of stalled wave:

Maxwell condition:

Can we get an explicit solution for the wave speed?

Explicit solution?

In some special cases, e.g. f(u) cubic or piecewise linear, can calculate wave speed fully by this method.

(See Keener & Sneyd p 274, Murray p 305)

For
$$f(u) = au(u-1)(\alpha - u)$$
 $0 < \alpha < 1$

Speed of the wave is:

$$c = \sqrt{\frac{a}{2}}(1 - 2\alpha)$$

$$f(u) = au(u-1)(\alpha - u) \quad 0 < \alpha < 1$$

Implications:

Wave moves right (c>0) if $\alpha < 1/2$

Moves left (c<0) if α >1/2

Wave stops (c=0) precisely for one value of the parameter, $\alpha = 1/2$