Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Traveling Waves in a bistable Reaction-Diffusion System

Wave phenomena in RD systems

Keener \& Sneyd (1998) Mathematical Physiology; p 270-275

$$
\frac{\partial u}{\partial t}=f(u)+D \frac{\partial^{2} u}{\partial x^{2}},\left.\quad \frac{\partial u}{\partial x}\right|_{ \pm \infty}=0
$$

With f cubic: $\quad f(u)=a u(u-1)(\alpha-u) \quad 0<\alpha<1$

U is the shape of the wave, z is the position along the wave front

Bistable well-mixed system

$$
\frac{\partial u}{\partial t}=f(u)
$$

Steady states:

$$
u=0, \alpha, 1
$$

$$
f(u)=a u(u-1)(\alpha-u) \quad 0<\alpha<1
$$

With diffusion

$$
\frac{\partial u}{\partial t}=f(u)+D \frac{\partial^{2} u}{\partial x^{2}} .
$$

$$
f(u)=a u(u-1)(\alpha-u) \quad 0<\alpha<1
$$

Moving Wave

Wave profile

Traveling wave coordinates: $z=x-c t, U(z)=u(x, t)$

What is the wave profile?

Traveling wave coordinates: $z=x-c t, U(z)=u(x, t)$
Scaling and transformation of coordinates:

PDE

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rightarrow-c \frac{d}{d z} \quad \frac{\partial}{\partial x} \rightarrow \frac{d}{d z} \\
& \frac{\partial u}{\partial t}=f(u)+\frac{\partial^{2} u}{\partial x^{2}} \rightarrow-c \frac{d U}{d z}=f(U)+\frac{d^{2} U}{d z^{2}}
\end{aligned}
$$

ODE

2nd order (nonlin) ODE $\quad U_{z z}-c U_{z}+f(U)=0$

Equivalent ODE system: $\left\{\begin{array}{l}U_{z}=W \\ W_{z}=c W-f(U)\end{array}\right.$

We can study this qualitatively in the UW phase plane to get insight into the shape of the wave.
$\frac{\partial u}{\partial t}=f(u)+\frac{\partial^{2} u}{\partial x^{2}}$
(Rescaled)

Example:

$$
f(u)=u(1-u)(u-\alpha) \quad W_{z}=c W-f(U)
$$

$$
U_{z z}-c U_{z}+f(U)=0
$$

$U_{z}=W$

Xpp file

```
# bistable.ode
# classic example of a wave joining 0 and 1
# u_t = u_xx + u(1-u)(u-a)
#
# -cu'=u"'+u(1-u)(u-a)
f(u)=u*(1-u)*(u-a)
par c=0,a=.25
u'=up
up'=-c*up-f(u)
init u=1
@ xp=u,yp=up,xlo=-.5,xhi=1.5,ylo=-.5,yhi=.5
done
```


Interpretation:

Each trajectory describes how U (and W) vary as z increases over range $-\infty<z<\infty$

In bio applications: $u=$ density >0, so we want: a positive bounded wave: Look for a positive bounded trajectory connecting two steady states.

U

Here is a heteroclinic trajectory:

Here it is on its own:
 W

And here is the shape of the wave

 it represents:

What is the speed of the wave?

- A reaction-diffusion equation with "bistable" kinetics will admit a traveling wave that looks like a moving "front", with high level at back, and low level ahead.
- But how fast does the wave move and does it ever stop?

There is a cute trick that allows us to answer this question for arbitrary function $f(u)$.

Determining wave speed

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=f(u)+\frac{\partial^{2} u}{\partial x^{2}}, \quad z=x-c t \\
& -c \frac{d U}{d z}-f(U)=\frac{\partial^{2} U}{d z^{2}}
\end{aligned}
$$

Multiply by $d U / d z$,

z

$$
-c\left(\frac{d U}{d z}\right)^{2}-f(U)\left(\frac{d U}{d z}\right)=\frac{1}{2} \frac{d}{d z}\left(\frac{d U}{d z}\right)^{2} \quad \text { integrate }
$$

$$
-c \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z-\int_{\text {uback }}^{\text {uffont }} f(U) d U=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d}{d z}\left(\frac{d U}{d z}\right)^{2}=0
$$

$$
-c \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z=\int_{\text {uback }}^{u f r o n t} f(U) d U
$$

The wave speed:

$$
\begin{aligned}
& -c \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z-\int_{\substack{\text { uback }}}^{\text {uffont }} f(U) d U=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d}{d z}\left(\frac{d U}{d z}\right)^{2}=0 \\
& -c \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z=\int_{\text {uback }}^{\text {ufout }} f(U) d U
\end{aligned}
$$

Finally..

$$
c=-\int_{\text {uback }}^{\text {uffront }} f(U) d U / \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z
$$

$$
f(u)=u(1-u)(u-\alpha)
$$

$$
c=-\int_{0}^{1} f(U) d U / \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z
$$

Result!

$$
c=-\int_{0}^{1} f(U) d U / \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z
$$

But what does this tell us????

Which way does it move?

$$
c=-\int_{0}^{1} f(U) d U /\left(\int_{-\infty}\left(\frac{d U}{d z}\right)^{2} d z\right) \begin{aligned}
& \text { Always } \\
& \text { positive }
\end{aligned}
$$

Which way does it move?

$$
\begin{gathered}
-\int_{0}^{1} f(U) d U>0 \\
c>0
\end{gathered}
$$

$$
\begin{gathered}
-\int_{0}^{1} f(U) d U<0 \\
c<0
\end{gathered}
$$

Which way does it move?

$c<0$

Which way does it move?

We can now answer the question:

Under what conditions would the wave stop?

Wave stops:

$\begin{array}{lrl}\text { Speed is zero if: } & 0=c=-\int_{0}^{1} f(U) d U / \int_{-\infty}^{\infty}\left(\frac{d U}{d z}\right)^{2} d z \\ \text { i.e.. if : } & & \int_{0}^{1} f(U) d U=0\end{array}$

Geometry of stalled wave:

Maxwell condition:

"Maxwell condition":

$$
\int_{0}^{1} f(U) d U=0
$$

"Equal areas"

Can we get an explicit solution for the wave speed?

Explicit solution?

In some special cases, e.g. $f(u)$ cubic or piecewise linear, can calculate wave speed fully by this method.
(See Keener \& Sneyd p 274, Murray p 305)
For

$$
f(u)=a u(u-1)(\alpha-u) \quad 0<\alpha<1
$$

Speed of the wave is: $\quad c=\sqrt{\frac{a}{2}}(1-2 \alpha)$

$$
f(u)=a u(u-1)(\alpha-u) \quad 0<\alpha<1
$$

Implications:

Wave moves right ($c>0$) if $\alpha<1 / 2$
Moves left (c<0) if $\alpha>1 / 2$
Wave stops ($\mathrm{c}=0$) precisely for one value of the parameter,

$$
\alpha=1 / 2
$$

