Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Switches, Oscillators, and the Cell Cycle

www.math.ubc.ca/MkeshetMCB2012

What to notice so far

- There are two ways to design a regulatory cell network:
- (1) protein-protein interactions (mutual phosphorylation, etc etc) (time scale: secmin)
- (2) gene networks (time scale: hrs day)

Gene circuits

Gene U

Gene V

Construction of a genetic toggle

 switch in Escherichia coliTimothy S. Gardner* \dagger, Charles R. Cantor* \& James J. Collins ${ }^{*} \dagger$
Noise-based switches and amplifiers for gene expression
Jeff Hasty*†, Joel Pradines*, Milos Dolnik**, and J. J. Collins*

Protein circuits

Protein circuits

Other things to notice

- By building up feedback interactions it is possible to obtain new dynamics :
- (1) Simple decay to steady state
- (2) Switch (bistability)
- (3) Oscillator (stable cycles)

No feedback

Decay to a single stable steady
state

No feedback

Decay to a single stable steady
state

Positive feedback

Bistability and switch-like

behaviour
possible

Add negative feedback

Stable cycles possible

Example: Phosphorylation cycle

Add positive feedback to kinase

Bistability and switch-like behaviour possible

Add further negative feedback

Stable cycles possible phosphatase

Simple mathematical example

$$
\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+A\right)
$$

A switch (Generic bistability)

$$
\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+A\right)
$$

The parameter A controls the switch

A controls the switch

"Switch" (Generic bistability)

$\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+y\right)$

The "parameter" y controls the switch

The curve $d x / d t=0$

y controls the switch

As y varies, we can go around the

 hysteresis loop

Add negative feedback to the switch

Now y is dynamic

$$
\begin{aligned}
& \frac{d x}{d t}=c\left[x-\frac{1}{3} x^{3}-y\right] \\
& \frac{d y}{d t}=\frac{1}{c}[x+a-b y] .
\end{aligned}
$$

Switch becomes an oscillator

$$
\begin{aligned}
& \frac{d x}{d t}=c\left[x-\frac{1}{3} x^{3}-y\right] \\
& \frac{d y}{d t}=\frac{1}{c}[x+a-b y] .
\end{aligned}
$$

Example:
This is the Fitzhugh
Nagumo model

"Switch" (Generic bistability)

$$
\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+v\right)
$$

Bifurcation
diagram

"Switch" (Generic bistability)

$\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+y\right)$

"Switch" (Generic bistability)

$\frac{d x}{d t}=c\left(x-\frac{1}{3} x^{3}+y\right)$

The $x y$ phase plane

Oscillator

Get an oscillator

Application to the Cell Cycle

- Work by John Tyson (Virginia Tech):
- The control of the cell division is maintained by an intricate web of signaling pathways, that incorporates many signals to decide when to divide.
- The cycle has "checkpoints" at which decisions are made.

Checkpoints

in phase
G1 there is low Cdk and low cyclin

buildup of cyclin/Cdk

APC is activated, leading to destruction of cyclin and loss of CdK activity.

Cyclin is produced and degraded

cyclin: $\quad \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y$,

APC is inactivated by phosphorylation

Active form (no phosphate)

APC is inactivated by phosphorylation

This will be modeled by a typical equation that we have already seen.

$$
\frac{d P}{d t}=\frac{V_{i} P_{i}}{J_{3}+P_{i}}-\frac{V_{a} P}{J_{4}+P} .
$$

Schematic

$$
\frac{d P}{d t}=\frac{V_{i} P_{i}}{J_{3}+P_{i}}-\frac{V_{a} P}{J_{4}+P}
$$

Negative feedback

APC and Cyclin mutually antagonistic

$$
\begin{aligned}
\text { cyclin: } & \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y, \\
\text { APC: } & \frac{d P}{d t}=\frac{V_{i} P_{i}}{J_{3}+P_{i}}-\frac{V_{a} P}{J_{4}+P} .
\end{aligned}
$$

Model

$$
\begin{aligned}
\text { cyclin: } & \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y, \\
\text { APC: } & \frac{d P}{d t}=\frac{V_{i} P_{i}}{J_{3}+P_{i}}-\frac{V_{a} P}{J_{4}+P} .
\end{aligned}
$$

Model

$$
\begin{aligned}
& \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y, \\
& \frac{d P}{d t}=\frac{\left(k_{3 p}+k_{3 p p} A\right) P_{i}}{J_{3}+P_{i}}-k_{4} m \frac{Y P}{J_{4}+P} .
\end{aligned}
$$

$$
P_{i}=1-P .
$$

Model

$$
\begin{aligned}
& \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y, \\
& \frac{d P}{d t}=\frac{\left(k_{3 p}+k_{3 p p} A\right)(1-P)}{J_{3}+(1-P)}-k_{4} m \frac{Y P}{J_{4}+P}
\end{aligned}
$$

Bistable switch

Cyclin

Cell Mass

Cell mass is the parameter that flips the switch

Activation of APC by Cdc20 ("A")

A= Cdc20. It increases sharply during metaphase and activates APC

A is turned on by cyclin (sigmoidally)

Activation of APC by Cdc20 ("A")

A= Cdc20. It increases sharply during metaphase and activates APC

Three variable model:

$$
\begin{aligned}
& \frac{d Y}{d t}=k_{1}-\left(k_{2 p}+k_{2 p p} P\right) Y, \\
& \frac{d P}{d t}=\frac{\left(k_{3 p}+k_{3 p p} A\right)(1-P)}{J_{3}+(1-P)}-k_{4} m \frac{Y P}{J_{4}+P}, \\
& \frac{d A}{d t}=k_{5 p}+k_{5 p p} \frac{\left(m Y / J_{5}\right)^{n}}{1+\left(Y m / J_{5}\right)^{n}}-k_{6} A .
\end{aligned}
$$

Now we get a cell cycle.

