Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

# Switches, Oscillators, and the Cell Cycle

#### www.math.ubc.ca/~keshet/MCB2012/

morim

#### What to notice so far

- There are two ways to design a regulatory cell network:
- (1) protein-protein interactions (mutual phosphorylation, etc etc) (time scale: sec-min)
- (2) gene networks (time scale: hrs day)

#### Gene circuits

Gene U



Gene V

#### **Construction of a genetic toggle** switch in *Escherichia coli*

Timothy S. Gardner\*†, Charles R. Cantor\* & James J. Collins\*†

### Noise-based switches and amplifiers for gene expression

Jeff Hasty\*<sup>†</sup>, Joel Pradines\*, Milos Dolnik\*<sup>‡</sup>, and J. J. Collins\*



#### Protein circuits



#### Protein circuits



#### Other things to notice

- By building up feedback interactions it is possible to obtain new dynamics :
- (1) Simple decay to steady state
- (2) Switch (bistability)
- (3) Oscillator (stable cycles)

#### No feedback



Decay to a single stable steady state

#### No feedback

 ${\mathcal X}$ 

Decay to a single stable steady state



#### Positive feedback

Bistability and switch-like behaviour possible  ${\mathcal X}$ 

A

#### Add negative feedback



## Stable cycles possible

#### Example: Phosphorylation cycle



#### Add positive feedback to kinase



Bistability and switch-like behaviour possible

#### Add further negative feedback



#### Simple mathematical example

$$\frac{dx}{dt} = c\left(x - \frac{1}{3}x^3 + A\right)$$





#### A switch (Generic bistability)

$$\frac{dx}{dt} = c\left(x - \frac{1}{3}x^3 + A\right)$$





The parameter A controls the switch

#### A controls the switch



#### "Switch" (Generic bistability)



#### y controls the switch



# As y varies, we can go around the hysteresis loop



#### Add negative feedback to the switch



#### Now y is dynamic

$$\frac{dx}{dt} = c \left[ x - \frac{1}{3}x^3 - y \right]$$
$$\frac{dy}{dt} = \frac{1}{c} [x + a - by].$$



#### Switch becomes an oscillator

$$\frac{dx}{dt} = c \left[ x - \frac{1}{3}x^3 - y \right]$$
$$\frac{dy}{dt} = \frac{1}{c} [x + a - by].$$

Example: This is the Fitzhugh Nagumo model

#### "Switch" (Generic bistability)

$$\frac{dx}{dt} = c\left(x - \frac{1}{3}x^3 + y\right)$$







#### "Switch" (Generic bistability)





#### The xy phase plane





#### Get an oscillator



#### Application to the Cell Cycle

- Work by John Tyson (Virginia Tech):
- The control of the cell division is maintained by an intricate web of signaling pathways, that incorporates many signals to decide when to divide.
- The cycle has "checkpoints" at which decisions are made.









#### Checkpoints

in phase G1 there is low Cdk and low cyclin



### buildup of cyclin/Cdk



APC is activated, leading to destruction of cyclin and loss of CdK activity.

#### Cyclin is produced and degraded



cyclin: 
$$\frac{dY}{dt} = k_1 - (k_{2p} + k_{2pp}P)Y,$$

#### APC is inactivated by phosphorylation



#### APC is inactivated by phosphorylation

Cyclin

Pi

APC

This will be modeled by a typical equation that we have already seen.

$$\frac{dP}{dt} = \frac{V_i P_i}{J_3 + P_i} - \frac{V_a P}{J_4 + P}$$



# Negative feedback



## APC and Cyclin mutually antagonistic







#### Model

# cyclin: $\frac{dY}{dt} = k_1 - (k_{2p} + k_{2pp}P)Y,$ APC: $\frac{dP}{dt} = \frac{V_i P_i}{J_3 + P_i} - \frac{V_a P}{J_4 + P}.$

# Model

$$\frac{dY}{dt} = k_1 - (k_{2p} + k_{2pp}P)Y,$$
  
$$\frac{dP}{dt} = \frac{(k_{3p} + k_{3pp}A)P_i}{J_3 + P_i} - k_4m\frac{YP}{J_4 + P}.$$

$$P_i=1-P.$$

# Model

$$\frac{dY}{dt} = k_1 - (k_{2p} + k_{2pp}P)Y,$$
  
$$\frac{dP}{dt} = \frac{(k_{3p} + k_{3pp}A)(1-P)}{J_3 + (1-P)} - k_4 m \frac{YP}{J_4 + P}.$$

#### Bistable switch



# Cell mass is the parameter that flips the switch



Cell Mass



# Activation of APC by Cdc20 ("A")



A= Cdc20. It increases sharply during metaphase and activates APC

# A is turned on by cyclin (sigmoidally)



# Activation of APC by Cdc20 ("A")



A= Cdc20. It increases sharply during metaphase and activates APC

#### Three variable model:

$$\frac{dY}{dt} = k_1 - (k_{2p} + k_{2pp}P)Y,$$
  

$$\frac{dP}{dt} = \frac{(k_{3p} + k_{3pp}A)(1-P)}{J_3 + (1-P)} - k_4m\frac{YP}{J_4 + P},$$
  

$$\frac{dA}{dt} = k_{5p} + k_{5pp}\frac{(mY/J_5)^n}{1 + (Ym/J_5)^n} - k_6A.$$

#### Now we get a cell cycle.



