Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Simple biochemical motifs (1)

www.math.ubc.ca/~keshet/MCB2012/

morime

Biochemical (and gene) circuits

Switches, oscillators, adaptation, and amplification circuits

Production-decay at constant rates

$$\frac{dx}{dt} = I - \gamma x$$

$$I, \gamma > 0$$
 constants.

Unique positive Steady state

Signal-induced Production

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R.$$

Note typical "1- $\exp(-k_2 t)$ " rise and exponential decay tail

Feedback to production

I is now a function of x

Michaelian Feedback to production

Michaelian Feedback to production

Sigmoidal Feedback to production

Sigmoidal cont'd

$$\frac{dx}{dt} = f(x) = \frac{x^2}{1+x^2} - mx + b$$

Actual number of steady states depends on parameters, e.g. on slope m (decay rate of x)

Generic bistability

Bifurcation Diagram

Hysteresis

Adaptation

$$\frac{dR}{dt} = k_1 S - k_2 X R,$$
$$\frac{dX}{dt} = k_3 S - k_4 X.$$

Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Simple biochemical motifs (2)

www.math.ubc.ca/~keshet/MCB2012/

morime

Genetic toggle switch

Construction of a genetic toggle switch in *Escherichia coli*

Timothy S. Gardner*+, Charles R. Cantor* & James J. Collins*+

NATURE VOL 403 20 JANUARY 2000 www.nature.com

An actual "engineered genetic circuit" based on the concepts and models of biochemical switches.

Genetic toggle switch

"Here we present the construction of a genetic toggle switch: a synthetic, bistable gene-regulatory network in E. coli and provide .. theory that predicts conditions for bistability."

Production-decay of two proteins

Gene U

Gene V

 $\frac{du}{dt} = I_u - d_u u,$ $\frac{dv}{dt} = I_v - d_v v.$

Negative feedback

Gene U

Gene V

du dt $=I_u-d_u u,$ $=I_{v}-d_{v}v.$ dv dt α

Negative feedback function

$$I_x=\frac{\alpha}{1+x^n}.$$

Higher *n* means sharper response with increasing *x*

Mutual inhibition

Each gene product inhibits the other gene.

"... the toggle equations have 2 fundamental aspects: cooperative repression and degradation .. of the repressors"

Switch-like behaviour

$$\frac{du}{dt} = \frac{\alpha_1}{1+v^n} - u,$$
$$\frac{dv}{dt} = \frac{\alpha_2}{1+u^m} - v.$$

Plasmid circuit

a synthetic, bistable gene-regulatory network in E. coli

Cells switching can be induced

fluorescence

Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Simple biochemical motifs (2.5)

www.math.ubc.ca/~keshet/MCB2012/

morime

Noise-based switches and amplifiers for gene expression

Jeff Hasty*[†], Joel Pradines*, Milos Dolnik*[‡], and J. J. Collins*

PNAS | February 29, 2000 | vol. 97 | no. 5 | 2075-2080

Dimerization and the phage lambda

- The phage λ gene encodes for protein (conc *x*)
- Protein dimerizes (conc of dimers y).
- Dimers bind to regulatory sites on the gene.
- Binding to OR2 activates transcription.
- Biding to OR3 inhibits transcription.

Reaction scheme

Dimerization: $2X \xleftarrow{K_1}{K_1} X_2$

Binding to DNA (OR2): $D + X_2 \xleftarrow{K_2} DX_2$

Binding to DNA (OR3): $D + X_2 \xleftarrow{K_3} DX_2^*$

Double binding (OR2 and OR3): $DX_2 + X_2 \xleftarrow{K_4} DX_2X_2$

 DX_2 = the dimerized repressor bound to site OR2 DX_2 * = the dimerized repressor bound to site OR3, DX_2X_2 = both OR2 and OR3 are bound by dimers

$$y = K_1 x^2,$$

$$u = K_2 dy = K_1 K_2 dx^2,$$

$$v = \sigma_1 K_2 dy = \sigma_1 K_1 K_2 dx^2,$$

$$z = \sigma_2 K_2 uy = \sigma_2 (K_1 K_2)^2 dx^4.$$

The "fast variables" assumed to equilibrate rapidly with the variable *x*.

Slower timescale

Protein synthesis: $DX_2 + P \xrightarrow{k_1} DX_2 + P + nX$ Protein degradation: $X \xrightarrow{k_d} A$

QSS and scaling the equations: system collapses to one variable, amt of synthesized protein, *x*:

$$\frac{dx}{dt} = \frac{\alpha x^2}{1 + (1 + \sigma_1)x^2 + \sigma_2 x^4} - \gamma x + 1.$$

(a)

(b)

Bifurcation:

$$\frac{dx}{dt} = \frac{\alpha x^2}{1 + (1 + \sigma_1)x^2 + \sigma_2 x^4} - \gamma x + 1.$$

Comments

Combination of scaling, time scale considerations, and various simplifications can often reduce larger networks to effective dynamics of simpler systems.

Other examples will be provided.

Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Simple biochemical motifs (3)

www.math.ubc.ca/~keshet/MCB2012/

morime

Activation-inactivation

GTPase cycle

Without feedback: Fast equilibration

Time (seconds)

System has a single biologically relevant steady state

Eliminate R, rescale

$$\frac{dR_p}{dt} = \frac{k_1 SR}{K_{m1} + R} - \frac{k_2 R_p}{K_{m2} + R_p}.$$

Use

$$R_T = R + R_p = \text{ constant.}$$

$$r_p = R_p/R_T$$

Steady states

$$\frac{dr_p}{dt} = \frac{k_1 S(1-r_p)}{K'_{m1} + (1-r_p)} - \frac{k_2 r_p}{K'_{m2} + r_p} = 0$$

The steady states can be shown to be solutions to a quadratic equation. Only one is positive and is called the "Goldbeter-Koshland function" of the stimulus.

"Zero order ultrasensitivity"

Steady state response

response is minimal for low signal level, until some threshold. Then there is steep rise to full response. – *Goldbeter and Koshland*