
Part 2: Simulating cell motility 
using CPM	




Shape change and motility	
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What are the overarching questions?	


•  How is the shape and motility of the cell 
regulated?	


•  What governs cell morphology, and why 
does it differ over different cell types?	


•  How do cells polarize, change shape, and 
initiate motility?	


•  How do they maintain their directionality?	

•  How can they respond to new signals?	

•  How do they avoid getting stuck?	




Types of models	


•  Fluid-based	

•  Mechanical (springs, dashpots, elastic 

sheets)	

•  Chemical (reactions in deforming domain)	

•  Other (agent-based, filament based, etc)	
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Represent reaction-diffusion and actin growth/nucleation 
in a 2D simulation of a “motile cell”	




More recently:	


Mare ́e AFM, Grieneisen VA, Edelstein-Keshet L (2012). 	

PLoS Comput Biol 8(3): e1002402. doi:10.1371/journal.pcbi.1002402	




2D cell motility using Potts model 
formalism	
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Discretize using hexagonal grid  	


•  compute actin density at 6 
orientations	


•  allow for branching by 
Arp2/3	
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Hamiltonian based computation:	
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Each hexagonal site contains:	


6 Filament 
orientations	


6 barbed end 
orientations	
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Resting vs stimulated cell 



Cdc42 distribution	


Low 	
         High	




Cdc42, Rac, Rho	


Low 	
         High	




Cdc42           Rac               Rho	


high	


low	
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Turning behaviour	


http://theory.bio.uu.nl/stan/keratocyte/	
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Turning behaviour	
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Variety of shape and 
motility phenotypes 
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Effect of shape	


•  cell can repolarize 
whether or not its shape 
is allowed to evolve	


•  when shape is dynamic, 
reaction to new stimuli is 
much more rapid	




What the lipids do: fine tuning	




. PLoS Comput Biol 8(3): e1002402. 
doi:10.1371	




Pushing barbed ends: extension	


Mare ́e AFM, Grieneisen VA, Edelstein-Keshet L (2012) How Cells Integrate Complex 
Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization 
and Motility. PLoS Comput Biol 8(3): e1002402. doi:10.1371/journal.pcbi.1002402	




Pushing barbed ends: retraction	


Pushing barbed ends: extension	
. PLoS Comput Biol 8(3): e1002402. doi:
10.1371	


Mare ́e AFM, Grieneisen VA, Edelstein-Keshet L (2012) How Cells Integrate Complex 
Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization 
and Motility. PLoS Comput Biol 8(3): e1002402. doi:10.1371/journal.pcbi.1002402	




From Jun Allard’s Lecture 5: 
(Simulating membrane mechanics)	




CPM Metropolis:	


1.  Choose edge site at random	

2.  Propose to extend or retract	

3.  Compute new H	

4.  If ΔH < -Hb keep this move	

5.  If ΔH ≥ -Hb accept move with probability	


6.  Iterate over each lattice site randomly 	




Hamiltonian and Energy minimization	


•  Energy of cell interface	

•                          of area expansion	

•                                                 of perimeter change 	




Effective forces	


•  Effect of pushing barbed ends	

•                                        of myosin contraction	




CPM parameters	




“Temperature”	


•  This parameter governs the fluctuation intensity	


•  Note edge of “cell” thereby fluctuates:	




Relationship between v and b: edge 
protrusion and barbed end density	


•  Consider case of no capping, no branching	

•  Suppose fraction (1-f) barbed ends pushing, 

and fraction f are not.	

•  Probability to extend and to retract:	




Protrusion speed	


•  Effective speed of protrusion:	




Mean velocity related to fraction f:	


•  Mean velocity = v = f v0	


•         =	


•   f =v / v0	




CPM Parameters T and Hb “tuned” to 
known relationship of v to b	


•  CPM formula:	


•  “known” relationship	




CPM Pluses	


•  Reasonably “easy” fast computations allow 
for more detailed biochemistry	


•  Captures fluctuations well 	

•  Can be tuned to behave like thermal-ratchet 

based protrusion 	

•  Easily extended to multiple interacting cells	




CPM minuses	


•  Mechanical forces not explicitly described	

•  Interpretation of CPM parameters less direct	

•  No representation of fluid properties of cell 

interior, exterior	

•  Controversy of application of Metropolis 

algorithm to non-equilibrium situations.	




Comparative study	


•  CPM 	
 	
 	
  Mechanical cells	


Andasari V, Roper RT, Swat MH, Chaplain MAJ (2012) Integrating Intracellular Dynamics 
Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell 
Growth and Invasion. PLoS ONE 7(3): e33726. doi:10.1371/journal.pone.0033726	



