Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Cell polarity models

www.math.ubc.ca/~keshet/MCB2012/

morime

Universal features of polarizing cells

- Ability to sense both steep and shallow external gradients (as small as 1%–2%) in vast range of concentrations. Polarization leads to an *amplification* of this asymmetry to some macroscopic level.
- 2. Remain *sensitive to new stimuli*, and can reorient when the stimulus gradient is changed.
- 3. Polarity maintained after stimulus is removed (*maintenance*).

GTPases

Schmitz et al (2000) Expt Cell Res 261:1-12

Active and inactive forms

Simplified view:

100-1000 fold difference in rates of diffusion

outside

Caricature model

Only two variables

Slow diffusing

fast diffusing

Simplified geometry

1D thin strip:

RD model

Active

Inactive

 $egin{aligned} &rac{\partial u}{\partial t} = D_u rac{\partial^2 u}{\partial x^2} + f(u,v), \ &rac{\partial v}{\partial t} = D_v rac{\partial^2 v}{\partial x^2} - f(u,v), \end{aligned}$

 $D_{\mu} \ll D_{\nu}$

A Jilkine

Behaviour: Wave-pinning

Mori Y, Jilkine A, LEK (2008) Biophys J, 94: 3684-3697. Mori Y, Jilkine A, LEK (2011) in press SIAM J Appl Math

WP = polarization

Rescaled (there is a small parameter)

$$egin{aligned} &\epsilonrac{\partial u}{\partial t} = \epsilon^2rac{\partial^2 u}{\partial x^2} + f(u,v), \ &\epsilonrac{\partial v}{\partial t} = Drac{\partial^2 v}{\partial x^2} - f(u,v), \ &f(u,v) = \left(\delta + rac{\gamma u^2}{1+u^2}
ight)v - u \end{aligned}$$

Analyse location and speed of wave front using matched asymptotic expansions..

Conditions for Wave-pinning:

1. For v fixed in some range, $v_{min} < v < v_{max}$,

f(u,v)=0 has 3 roots

3. Conservation of u+v

Shape of *f*:

2. There is a v_c in the above range such that

$$\int_{u_{-}}^{u_{+}} f(u,v_{c}) du = 0$$

4. $D_u << D_v$

Methods of analysis

$$egin{aligned} &rac{\partial u}{\partial t}(x,t) = f(u,v) + D_u riangle u, \ &rac{\partial v}{\partial t}(x,t) = g(u,v) + D_v riangle v, \end{aligned}$$

Linearization, Linear stability analysis of full PDE, look for +ve eigenvalues

Methods of analysis, RD systems

$$egin{aligned} &rac{\partial u}{\partial t}(x,t) = f(u,v) + D_u riangle u, \ &rac{\partial v}{\partial t}(x,t) = g(u,v) + D_v riangle v, \end{aligned}$$

Local pulse analysis

*D*_{*u*} <<

 D_v

Due to: Stan Maree, Veronica Grieneisen, with Bill Holmes

Local Pulse Analysis

Approximate PDEs by ODEs for local and global variables:

$$egin{aligned} &rac{\partial u}{\partial t}(x,t)=f(u,v)+D_u riangle u, \ &rac{\partial v}{\partial t}(x,t)=g(u,v)+D_v riangle v \end{aligned}$$

 $D_u \ll D_v$

$$\begin{split} &\frac{du^g}{dt}(x,t)=f(u^g,v^g),\\ &\frac{dv^g}{dt}(x,t)=g(u^g,v^g),\\ &\frac{du^l}{dt}(x,t)=f(u^l,v^g) \end{split}$$

 $D_u \rightarrow 0 \quad D_v \rightarrow \infty$

LPA bifurcation and patterns

Cell Polarization, a review of Models and Experiments

Jilkine A, Edelstein-Keshet L (2011) A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues. PLoS Comput Biol 7(4): e1001121.

(Images on next slides taken from this source)

Additional features of some cells

- 1. Spontaneous polarization, in absence of spatial cues.
- 2. *Adaptation:* a persistent response to a gradient stimulus, but transient response to a spatially uniform stimulus.
- 3. Response to multiple stimuli: either *multiple "fronts*" or a *unique axis of polarity*.
- 4. Pseudopods continually extended and retracted. Reorient by splitting a pseudopod, one part becoming dominant.

Cell type comparisons

Cell type	Polarization Behaviors	Scale
Budding yeast	Spontaneous polarization, unique axis of polarity	Size: 5 µm, TP: 3 min
D. discoideum	Gradient sensing (1% and up), adaptation (Lat), spontaneous polarization, high amplification, reorientation, maintenance, multiple fronts (Lat), unique axis (WT)	Size: 10–20 μm, TP: 30–60 s, speed: 3–15 μm/min
Fibroblasts	Gradient sensing, reorientation	Size: 50–150 μm, TP: 30–50 min, speed: 1 μm/min
Keratocytes	Spontaneous polarization, maintenance	Size: 10 μ m (fragments), 30–40 μ m (cells), speed: 10–40 μ m/min,
Neutrophils	Gradient sensing, spontaneous polarization, high amplification, reorientation, unique axis (WT)	Size: 10 μm, TP: 30 s, speed: 10–20 μm/min
Neurons	Attractive/repulsive turning, gradient detection, adaptation	

PLoS Comput Biol 7(4): e1001121

Stimuli and signaling proteins

Cell type	Feedback Loops	Stimulus	Cytoskeleton
Budding yeast	$Cdc42 \rightarrow Cdc24 \rightarrow Cdc42,$ $Cdc42 \rightarrow actin \rightarrow Cdc42$	Bud1	Actin (MO)
D. discoideum	Amplification upstream of PI3K	cAMP	Actin (MO)
Fibroblasts	Cdc42→Rac→RhoA	PDGF, fibronectin, interleukins	Actin, MT, FA
Keratocytes		Mechanical	Actin
Neutrophils	Front/back mutual inhibition PIP3→actin→PIP3	fMLP, interleukins, others	Actin
Neurons	Rac/Rho mutual inhibition	Netrins, semaphorins, ephrins	Actin, MT

PLoS Comput Biol 7(4): e1001121

Biophys J 82: 50–63

Levine H, Kessler DA, Rappel WJ (2006) PNAS 103: 9761Mori Y, Jilkine A, LEK (2008) Biophys J 94: 3684–3697

Testing four models

Wave-Pinning

Goryachev

Otsuji

LEGI

PLoS Comput Biol 7(4): e1001121

Types of models

Reaction-diffusion with slow and fast variables

$$\frac{\partial u}{\partial t} = D_u \frac{\partial^2 u}{\partial x^2} + f(u, v),$$
$$\frac{\partial v}{\partial t} = D_v \frac{\partial^2 v}{\partial x^2} + g(u, v),$$

• Wave-pining

$$f(u,v) = -g(u,v) = v\left(k_0 + \frac{\gamma u^2}{K^2 + u^2}\right) - \delta u.$$

• Otsuji

$$f(u,v) = -g(u,v) = a_1 \left[v - \frac{u+v}{(a_2 s(u+v)+1)^2} \right],$$

Goryachev

$$f(u,v) = -g(u,v) = \alpha E_c u^2 v + \beta E_c u v - \gamma u, \quad E_c = \frac{E_c^0}{1 + \int_S f(u) ds}.$$

• LEGI: see over

Local excitation global inhibition (LEGI)

$$\frac{\partial A}{\partial t} = k_A S(t,x) - k_{-A} A,$$

$$\frac{\partial I}{\partial t} = D \frac{\partial^2 I}{\partial x^2} + k_I S(t,x) - k_{-I} I,$$

$$\frac{\partial R}{\partial t} = k_R A(R_T - R) - k_{-R} IR,$$

PLoS Comput Biol 7(4): e1001121

Stimuli

 $\frac{\partial u}{\partial t} = D_u \frac{\partial^2 u}{\partial x^2} + f(u, v) + k_S v,$

 $\frac{\partial v}{\partial t} = D_v \frac{\partial^2 v}{\partial x^2} - f(u, v) - k_S v,$

Single localized stimulus at left edge of the cell

Features that models can explain

Behavior	"Turing Type"	Wave-Based	Gradient Sensing
Maintenance of polarity	Yes	Yes	No
Multi-stimuli response	Yes (transient)	Yes (long time-scale)	Yes
High amplification	Yes	Yes	No
Adaptation	No	No	Yes
Spontaneous polarization	Yes	Yes	No
Reversible asymmetry	No	Yes	Yes

PLoS Comput Biol 7(4): e1001121

End of Part 1