## Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

## Simple biochemical motifs (1)


www.math.ubc.ca/wkeshetMCB2012

## Biochemical (and gene) circuits

Switches, oscillators, adaptation, and amplification circuits

## Production-decay at constant rates



$$
\frac{d x}{d t}=I-\gamma x
$$

$$
I, \gamma>0 \text { constants. }
$$

Unique positive Steady state


## Signal-induced Production

$$
\xrightarrow{\substack{S \\ i}} R \longrightarrow
$$

$$
\frac{d R}{d t}=k_{0}+k_{1} S-k_{2} R .
$$

Note typical " $1-\exp \left(-\mathrm{k}_{2} \mathrm{t}\right)$ " rise


## Feedback to production



## $I$ is now a function of $x$

## Michaelian Feedback to production



$$
I(x)=I_{0}+\frac{I_{\max } x}{k_{n}+x}
$$

## Michaelian Feedback to production

$$
I(x)=I_{0}+\frac{I_{\max } x}{k_{n}+x}
$$

$$
\frac{d x}{d t}=I-\gamma x
$$

At most 2 steady states, one stable.

## Sigmoidal Feedback to production

$$
I(x)=I_{0}+\frac{I_{\max } x^{2}}{k_{n}^{2}+x^{2}}
$$

$$
\frac{d x}{d t}=I-\gamma x
$$

Up to 3 steady states, two stable.
"bistability"

## Sigmoidal cont'd

$$
\frac{d x}{d t}=f(x)=\frac{x^{2}}{1+x^{2}}-m x+b
$$

Actual number of steady states depends on parameters, e.g. on slope $m$ (decay rate of $x$ )


## Generic bistability



## Bifurcation Diagram



## Hysteresis




