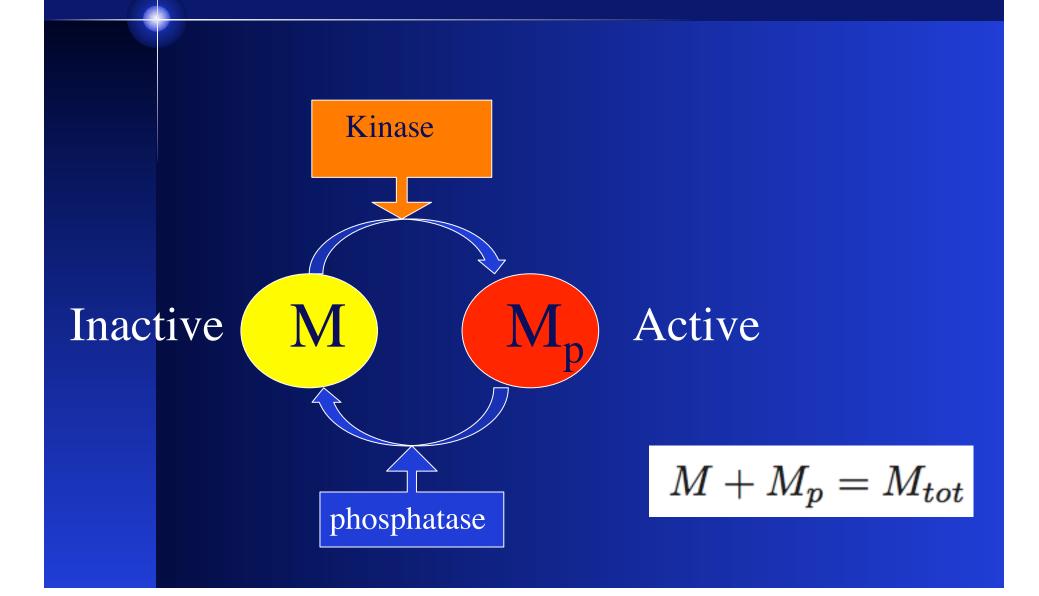
Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Biochemical motifs (4)

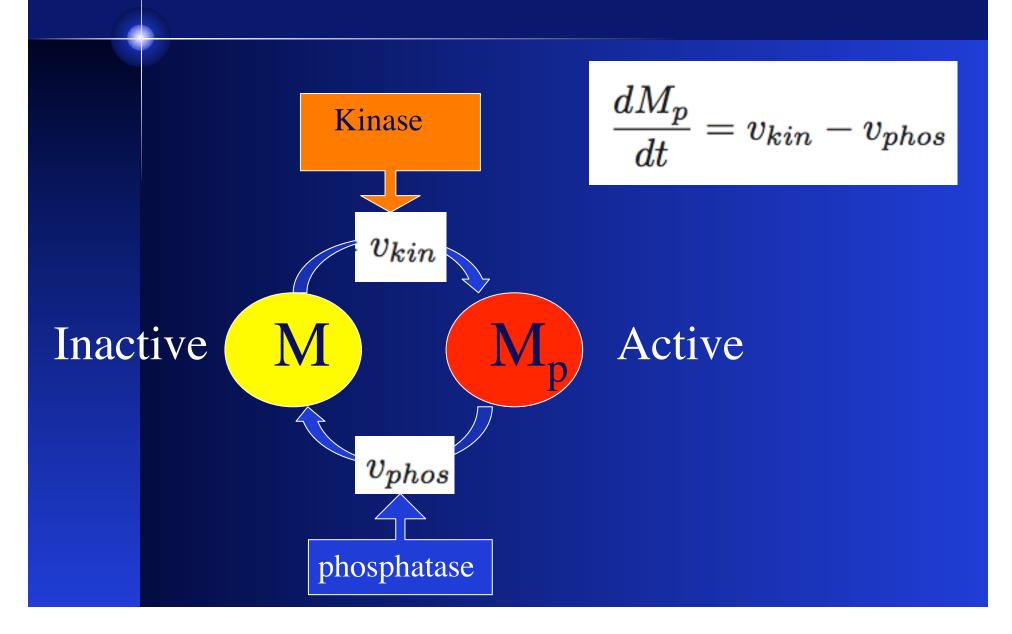
Basic GTPase signaling modules and feedback

B.N. Kholodenko. Cell-signalling dynamics in time and space. Nature Reviews Molecular Cell Biology, 7(3):165–176, 2006

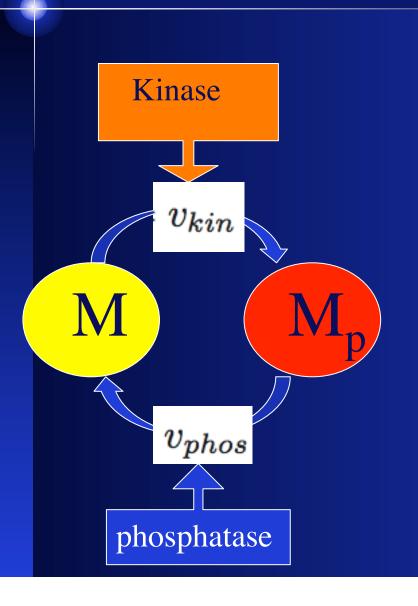
Phosphorylation cycle



Phosphorylation cycle



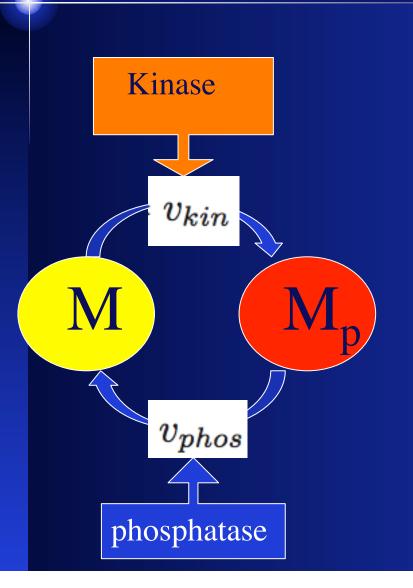
Each reaction is Michaelian



$$v_{kin} = \frac{V_1 M}{(K_{m1} + M)}$$

$$v_{phos} = \frac{V_2 M_p}{(K_{m2} + M_p)}$$

But we will allow the amt of kinase and phosphatase to vary too...

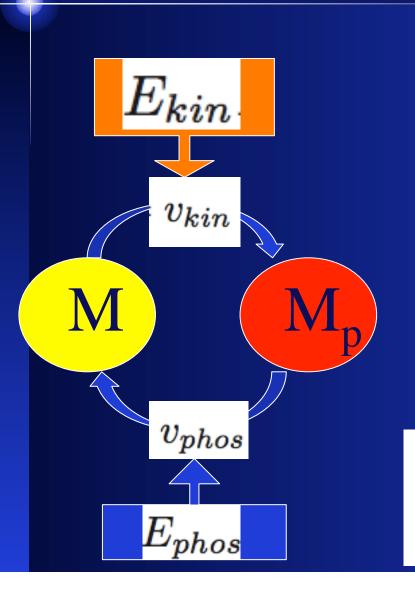


$$v_{kin} = \frac{V_1 M}{(K_{m1} + M)}$$

So we will express these rates in terms of total amounts of Kinase and Phosphatase

$$v_{phos} = \frac{V_2 M_p}{(K_{m2} + M_p)}$$

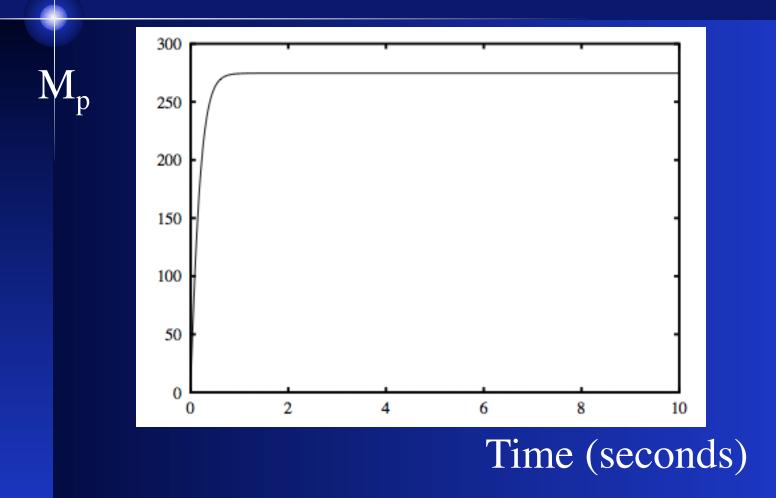
Full Expressions



$$v_{kin} = \frac{(k_{kin}^{cat} E_{kin} M)}{(K_{m1} + M)}$$

$$v_{phos} = \frac{(k_{phos}^{kin} E_{phos} M_p)}{(K_{m2} + M_p)}$$

Without feedback: Fast equilibration



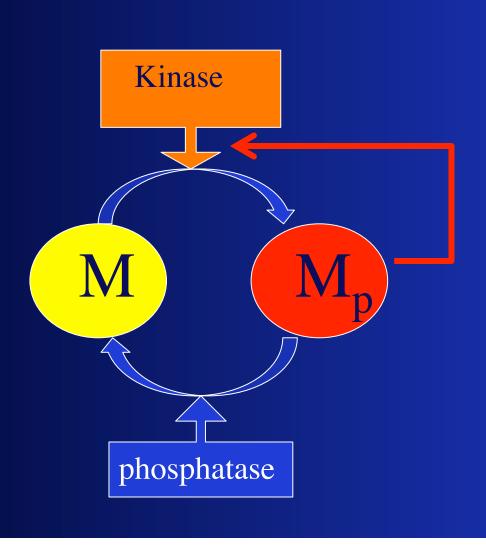
System has a single biologically relevant steady state

Feedback

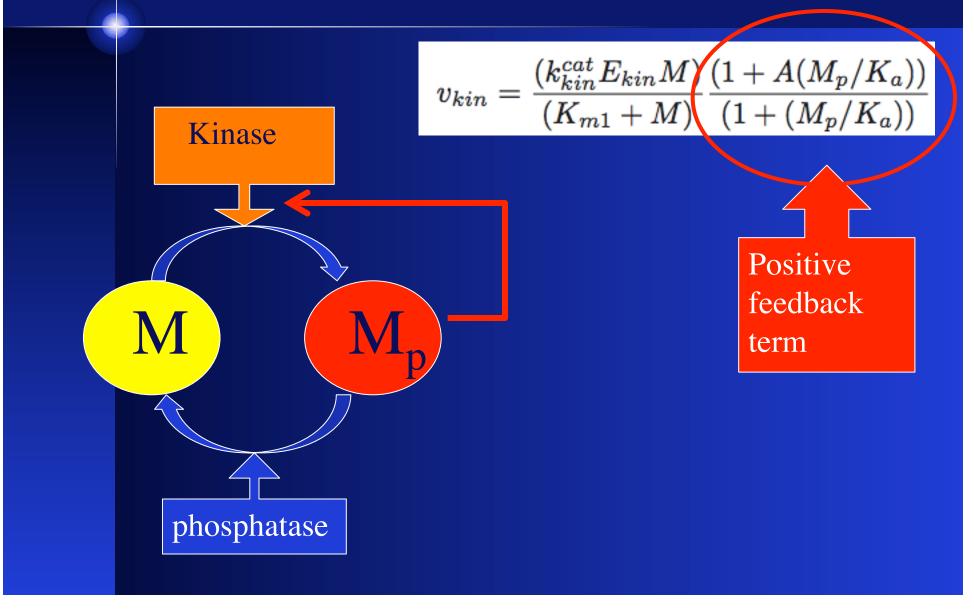
We now consider a variety of feedback from the active protein Mp to the other parts of the system.

We will see that this feedback will have implications on the dynamics.

Positive feedback to kinase



Kinase rate increases as M_p increases



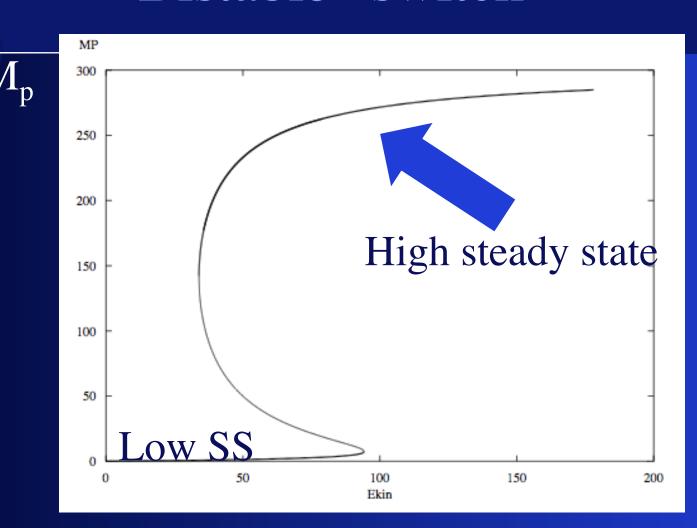
Model equations

$$\frac{dM_p}{dt} = v_{kin} - v_{phos}$$

$$v_{kin} = rac{(k_{kin}^{cat} E_{kin} M)}{(K_{m1} + M)} rac{(1 + A(M_p/K_a))}{(1 + (M_p/K_a))}$$
 $v_{phos} = rac{k_{phos}^{kin} E_{phos} M_p}{(K_{m2} + M_p)}$

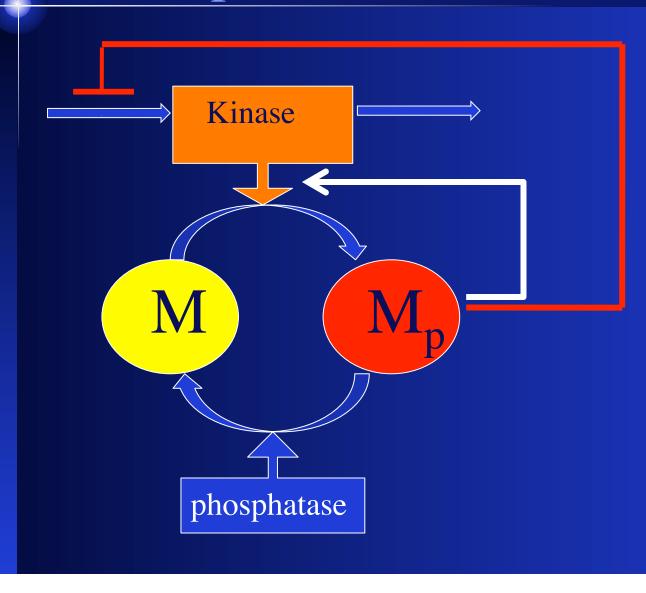
$$M + M_p = M_{tot}$$

Bistable "switch"



 E_{kin}

Negative feedback to kinase production rate



Now kinase is a variable

$$\frac{dE_{kin}}{dt} = v_{kin}^{synth} - v_{kin}^{deg}$$

Kinase equation:

$$\frac{dE_{kin}}{dt} = v_{kin}^{synth} - v_{kin}^{deg}$$

$$v_{kin}^{synth} = V_{kin}^{0} \frac{(1 + (M_p/K_l))}{(1 + I(M_p/K_l))}$$

I > 1 for negative feedback

Full Model

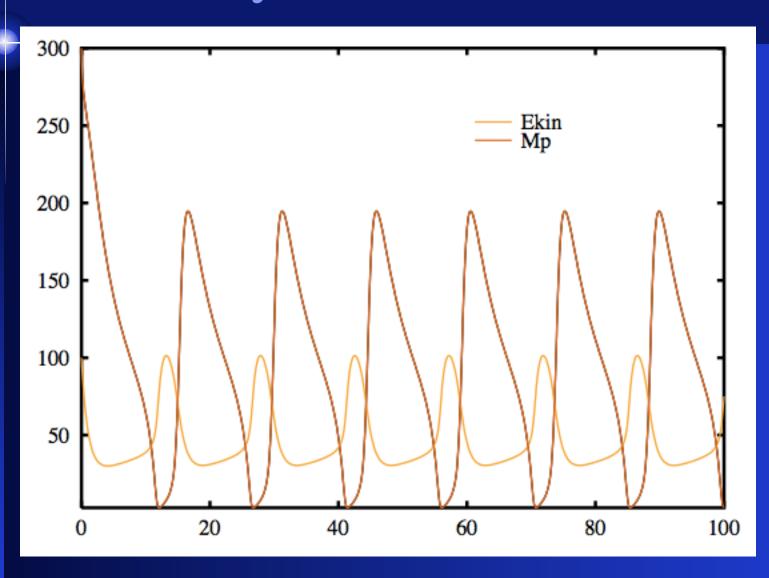
$$\frac{dM_p}{dt} = v_{kin} - v_{phos}$$

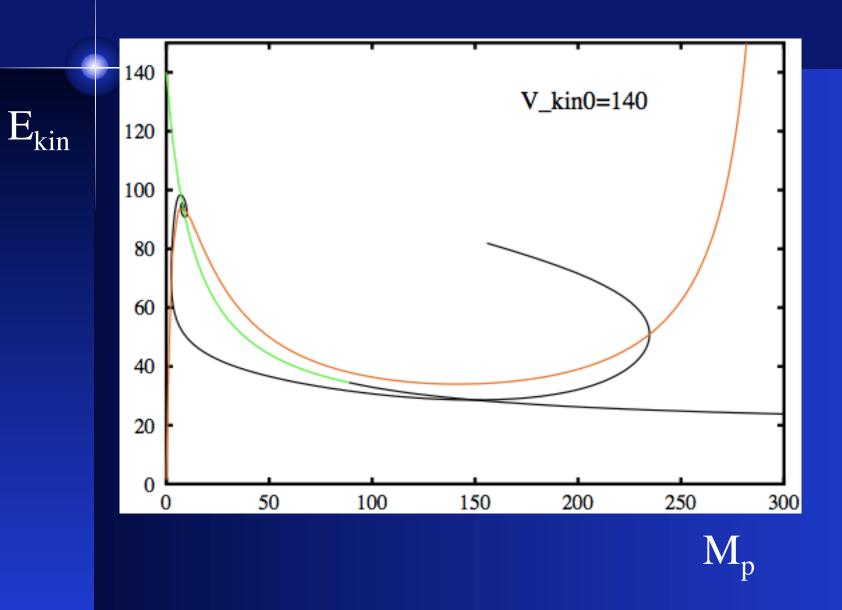
$$\frac{dE_{kin}}{dt} = v_{kin}^{synth} - v_{kin}^{deg}$$

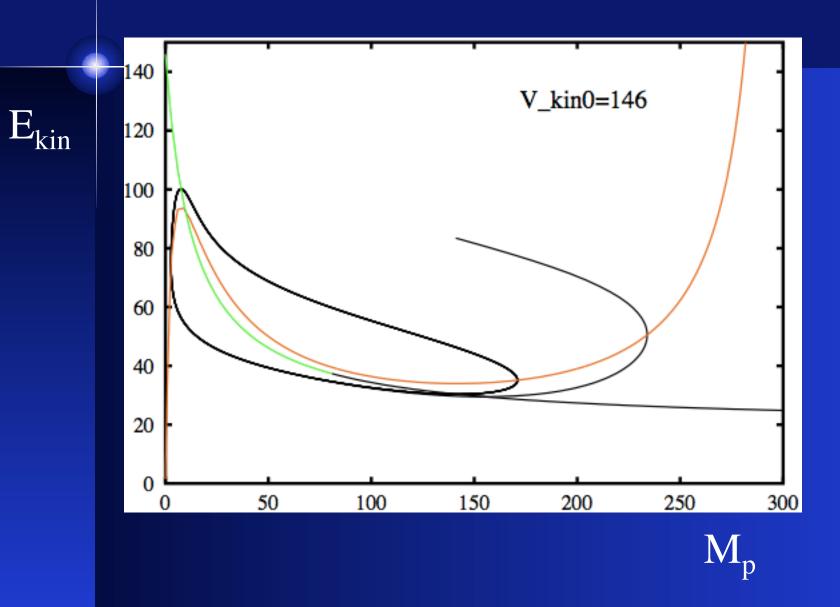
$$M + M_p = M_{tot}$$

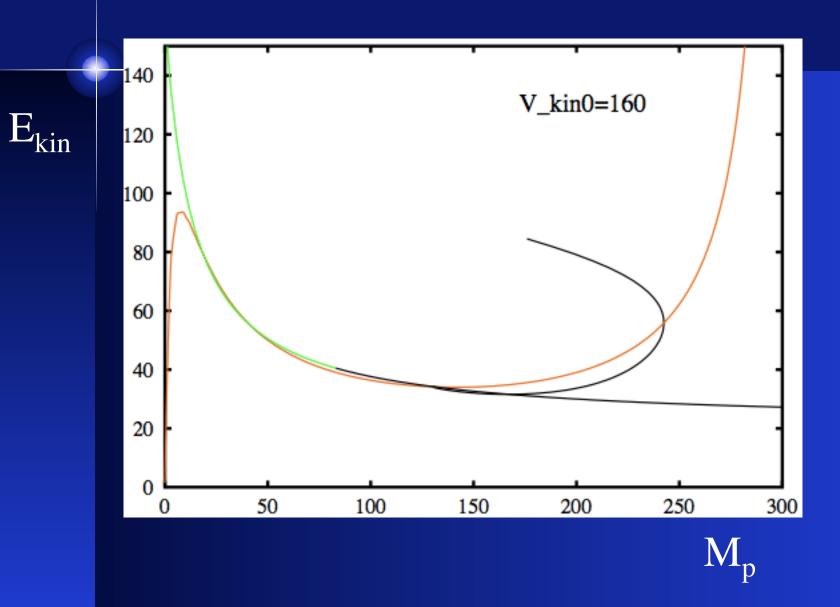
$$egin{aligned} v_{kin} &= rac{(k_{kin}^{cat} E_{kin} M)}{(K_{m1} + M)} rac{(1 + A(M_p/K_a))}{(1 + (M_p/K_a))} \ v_{phos} &= rac{(k_{phos}^{kin} E_{phos} M_p)}{(K_{m2} + M_p)} \ v_{kin}^{synth} &= V_{kin}^0 rac{(1 + (M_p/K_l))}{(1 + I(M_p/K_l))} \ v_{kin}^{deg} &= k_{kin}^{deg} E_{kin} \end{aligned}$$

Stable cycles can be found

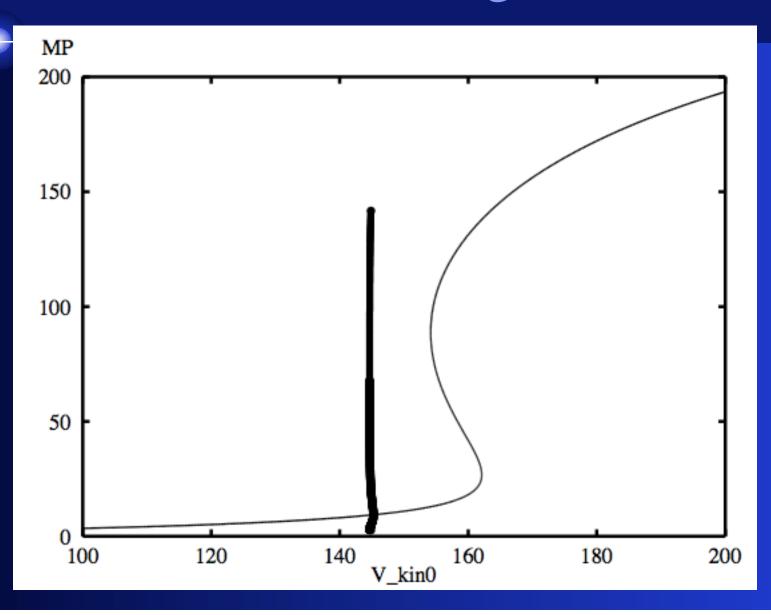








Bifurcation diagram



Zoom view: Hopf Bifurcation

