1. a) Prove that $Mf \in L^1(\mathbb{R}^n)$ if and only if $f = 0$ a.e.

b) If $f \in L^1(\mathbb{R}^n)$, it need not even be true that $Mf \in L^1_{\text{loc}}(\mathbb{R}^n)$. Find an example of a function $f \in L^1(\mathbb{R}^n)$ so that $Mf \not\in L^1_{\text{loc}}(\mathbb{R}^n)$, and show that your example is correct. Hint: the statement of part (c) might be useful for your search.

c) Let $f: \mathbb{R}^n \to \mathbb{C}$ and suppose that
\[
\int |f(x)| \log(2 + |f(x)|) dx < \infty.
\]
Prove that $Mf \in L^1_{\text{loc}}(\mathbb{R}^n)$.

Hint: If K is a compact set, then
\[
\int_K Mf(x) dx \leq \int_{K \cap \{|Mf| < 1\}} Mf(x) dx + \int_{Mf \geq 1} Mf(x) dx \leq |K| + \int_{Mf \geq 1} Mf(x) dx.
\]

Solution. a) We prove the only if part. Assume w.l.o.g that $\int_{|x| < 1} |f| = c > 0$, otherwise we do a translation. It suffices to prove $\int_{|x| > 1} Mf = \infty$. Given $|x| > 1$, the key is to notice that $B(x, 2|x|) \supset B(0, |x|) \supset B(0, 1)$. This gives $Mf(x) \gtrsim |x|^{-n}$ for $|x| > 1$.

b) Consider the function
\[
f(x) = \sum_{k=1}^{\infty} \frac{2^{kn}}{k^2} 1_{[2^{-k-1}, 2^{-k})}(|x|).
\]
Then $f \in L^1(\mathbb{R}^n)$. For $0 < |x| \leq 1/2$, use $B(x, 2|x|) \supset B(0, |x|)$ to show that $Mf(x) \gtrsim |x|^{-n} / (-\log |x|)$.

c) We use the hint. By Tonelli’s theorem we can write
\[
\int_{Mf \geq 1} Mf(x) dx = \int_1^\infty \mu\{x : Mf(x) > t\} dt.
\]
Split $f = f_1 + f_2$ where $f_1 = f1_{|f| \leq t/2}$ and $f_2 = f1_{|f| > t/2}$. Then $Mf \leq t/2 + Mf_2$, so
\[
\mu\{x : Mf(x) > t\} \leq \mu\{x : Mf_2(x) > t/2\} \lesssim t^{-1} \|f_2\|_1.
\]
Thus
\[\int_1^\infty \mu\{x : Mf(x) > t\} \, dt \lesssim \int_1^\infty t^{-1} \int_{|f| > t/2} |f(x)| \, dx \, dt \]
(by Tonelli’s) = \[\int_{|f| > t/2} |f(x)| \log(2|f(x)|) \, dx \]
\[\lesssim \int |f(x)| \log(2 + |f(x)|) \, dx. \]

2. Let \(\phi : \mathbb{R}^n \to [0, \infty] \) be radial and non-increasing, i.e. \(\phi(x) = \phi(y) \) whenever \(|x| = |y| \), and \(\phi(x) \leq \phi(y) \) whenever \(|x| \geq |y| \).

Prove that if \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), then \(|\phi \ast f(x)| \leq \|\phi\|_1 Mf(x) \) for all \(x \in \mathbb{R}^n \) with \(Mf(x) < \infty \).

\textbf{Solution.} Step 1: Prove this for \(\phi(x) = 1_{|x| \leq R} \) where \(R > 0 \).

Step 2: Let \(\mathcal{D} \) be the collection of all radial functions \(\phi : \mathbb{R}^n \to [0, \infty] \) of the form
\[\phi(x) = \sum_{i=1}^N s_i 1_{b_{i-1} \leq |x| < b_i}, \]
where \(0 \leq s_N \leq s_{N-1} \leq \cdots \leq s_1 < \infty \) and \(0 = b_1 < b_2 < \cdots < b_N \). We then prove the required inequality for all \(\phi \in \mathcal{D} \).

\textit{Hint:} For \(\phi \in \mathcal{D} \), we can write
\[\phi(x) = \sum_{i=1}^N c_i 1_{|x| < b_i}, \]
where \(c_i = s_i - s_{i+1} \geq 0 \) for \(1 \leq i \leq N \) (let \(s_{N+1} = 0 \)).

Step 3: Given \(\phi : \mathbb{R}^n \to [0, \infty] \) be radial and radially decreasing. Define \(\phi^0 : [0, \infty) \to [0, \infty] \) by \(\phi^0(r) = \phi(r, 0, 0, \ldots, 0) \). For each \(j \), we define
\[\phi_j(x) = \sum_{i=1}^{4^j} \phi^0(i2^{-j}) 1_{i2^{-j} \leq |x| < i2^{-j}}. \]
Show that \(\phi_j(x) \not\nearrow \phi(x) \) for all continuity points \(x \) of \(\phi \).

Step 4: Show that for any decreasing \(\phi^0 : [0, \infty) \to [0, \infty] \), \(\phi^0 \) has at most countably many discontinuity points. \textit{Hint:} A monotone function can only have jump discontinuities. Fix a compact \(K \subseteq (0, \infty) \) and \(k \in \mathbb{N} \). Show that the collection \(C_{k,K} \) of all points \(x \in K \) where the jump is greater than \(k^{-1} \) is finite. Note that the set of all discontinuity points of \(\phi^0 \) on \([0, \infty) \) can be written as a countable union of sets of the form \(C_{k,K} \).

Step 5: Use Step 4 to conclude that \(\phi_j(x) \not\nearrow \phi(x) \) a.e. Apply Step 2 to each \(\phi_j \) and then use monotone convergence theorem.
\[\square \]
If \(f \in C_c(\mathbb{R}^n) \) and \(r > 0 \), define
\[
A_r f(x) = \int_{S^{n-1}} f(x + ry) d\sigma(y),
\]
where \(S^{n-1} \) is the \(d-1 \) dimensional unit sphere in \(\mathbb{R}^n \), and \(\sigma \) is normalized surface measure on \(S^{n-1} \) (i.e. \(\sigma(S^{n-1}) = 1 \)). Define
\[
M_S f(x) = \sup_{r > 0} A_r |f|(x).
\]

\(M_S \) is called the spherical maximal operator. Stein proved that if \(n \geq 3 \) and \(n/(n-1) < p \leq \infty \), then there is a constant \(C_{n,p} \) so that
\[
\|M_S f\|_p \leq C_{n,p} \|f\|_p \quad \text{for all } f \in L^p(\mathbb{R}^n) \cap C_c(\mathbb{R}^n).
\]
(1)

Later, Bourgain proved that (1) holds when \(n = 2 \) and \(2 < p \leq \infty \).

Using this result, prove that if \(f \in L^p_{\text{loc}}(\mathbb{R}^n) \) for the same range of \(p \) as above, then
\[
\lim_{r \searrow 0} A_r f(x) = f(x) \quad \text{a.e.}
\]

Bonus. Previously, this problem asked you to prove that
\[
\lim_{r \searrow 0} A_r f(x) = f(x) \quad \text{a.e.}
\]
for all \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). Give a counter-example showing that this is not true.

Solution. W.l.o.g assume \(f \) is supported on a compact set, and \(p < \infty \). (Why?) Then \(f \in L^p(\mathbb{R}^n) \), so for any \(\epsilon > 0 \) we may find a continuous \(g \in L^p(\mathbb{R}^n) \) such that \(\|f - g\|_p < \epsilon \). Then split
\[
\limsup_{r \to 0^+} |A_r f(x) - f(x)|
\]
\[
\leq \limsup_{r \to 0^+} |A_r f(x) - A_r g(x)| + \limsup_{r \to 0^+} |A_r g(x) - g(x)| + |g(x) - f(x)|
\]
\[
= \limsup_{r \to 0^+} |A_r (f - g)(x)| + |g(x) - f(x)|
\]
\[
\leq M(f - g)(x) + |g(x) - f(x)|.
\]

Thus for each \(t > 0 \),
\[
\mu\{x : \limsup_{r \to 0^+} |A_r f(x) - f(x)| > t\}
\]
\[
\leq \mu\{x : M(f - g)(x) > t/2\} + \mu\{x : |f(x) - g(x)| > t/2\}
\]
\[
\lesssim t^{-1} \|f - g\|_p^p < t^{-1} \epsilon^p.
\]

Since this holds for any \(\epsilon > 0 \), we have \(\mu\{x : \limsup_{r \to 0^+} |A_r f(x) - f(x)| > t\} = 0 \). Since this holds for any \(t > 0 \), we have \(A_r f(x) \to f(x) \) a.e. \(\square \)

For the bonus question, refer to the appendix.
4. In lecture we discussed the vector space \(L^p(\mathbb{R}^n) + L^p(\mathbb{R}^n) \) consisting of all equivalence classes of measurable functions that can be written as \(g + h \), where \(g \in L^p(\mathbb{R}^n) \) and \(h \in L^p(\mathbb{R}^n) \). If \(f \in L^p(\mathbb{R}^n) + L^p(\mathbb{R}^n) \), define

\[
\|f\|_{L^p + L^p} = \inf\{\|g\|_{L^p} + \|h\|_{L^p} : f = g + h\}.
\]

a) Prove that with this definition, \(L^p + L^p \) is a normed vector space, i.e. prove that \(\|\cdot\|_{L^p + L^p} \) is indeed a norm.

b) Is this normed vector space complete? Prove that your answer is correct.

Solution.

a) We abbreviate \(\|\cdot\|_{L^p + L^p} \) as \(\|\cdot\| \).

- It is trivial that \(\|f\| \geq 0 \) and that \(\|0\| = 0 \). Conversely, let \(f \) so that \(\|f\| = 0 \). Suppose, towards contradiction, that \(f \) is not 0 a.e. Then there exists a set \(A \subset \mathbb{R}^n \) of positive measure and a number \(t > 0 \) so that \(|f(x)| > t \) for all \(x \in A \). If \(f = g + h \) with \(g \in L^p \) and \(h \in L^p \), then \(|g(x)| + |h(x)| \geq t \) for a.e. \(x \in A \), and thus either \(|x \in \mathbb{R}^n : |g(x)| \geq t/2 | \geq |A|/2 \), or \(|x \in \mathbb{R}^n : |h(x)| \geq t/2 | \geq |A|/2 \), or both.

With the convention that \(1/p = 0 \) if \(p = \infty \), in either case, we have

\[
\|g\|_{L^p} + \|h\|_{L^p} \geq (t/2) \min\{(|A|/2)^{1/p}, (|A|/2)^{1/p}\}.
\]

Since \(g \) and \(h \) were arbitrarily chosen, we conclude that \(\|f\| \geq (t/2) \min\{(|A|/2)^{1/p}, (|A|/2)^{1/p}\} > 0 \).

- \(\|cf\| = |c|\|f\| \) means that

\[
\inf\{\|g\|_{L^p} + \|h\|_{L^p} : cf = g + h\} = |c| \inf\{\|g\|_{L^p} + \|h\|_{L^p} : f = g + h\}.
\]

If \(c = 0 \), this is easy. If \(c \neq 0 \), then for both directions we do a simple scaling by \(c^{-1} \).

- To show the triangle inequality, let \(f_1, f_2 \) be given and let \(g_1 + h_1 = f_1, g_2 + h_2 = f_2 \) be any decomposition. We aim to show that there is a decomposition \(f_1 + f_2 = g_3 + h_3 \) with

\[
\|g_1\|_{L^p} + \|h_1\|_{L^p} + \|g_2\|_{L^p} + \|h_2\|_{L^p} \geq \|g_3\|_{L^p} + \|h_3\|_{L^p}.
\]

Taking \(g_3 = g_1 + g_2 \) and \(h_3 = h_1 + h_2 \), we are done.

b) It is complete. We will prove the completeness using the following criterion in functional analysis: a normed vector space \(X \) is complete if and only if every absolutely convergent sequence is convergent, that is, for each sequence \(f_n \in X \) with \(\sum_n \|f_n\| < \infty \), there is \(f \in X \) such that \(\sum_n f_n = f \) in norm.

Now let \(\sum_n \|f_n\| < \infty \). By definition of \(\|\cdot\| \), for each \(n \) there is \(g_n, h_n \) with \(f_n = g_n + h_n \) such that

\[
\|f_n\| + 2^{-n} > \|g_n\|_{L^p} + \|h_n\|_{L^p}.
\]

Summing in \(n \) we get

\[
\sum_n \|g_n\|_{L^p} + \|h_n\|_{L^p} < \sum_n \|f_n\| + 1 < \infty.
\]
Similarly, there is a constructive method of finding a counter-example for the bonus question in Q3 when \(n = 2 \). In fact, we will construct an \(f \) supported on \([0,1]^2\) with \(f \in L^p([0,1]^2) \) if and only if \(p < 2 \), which is sharp except at the endpoint. It remains unknown to me if we can find \(f \in L^p_{loc}(\mathbb{R}^2) \) with this property.

Appendix

We give a counter-example for the bonus question in Q3 when \(n = 2 \). In fact, we will construct an \(f \) supported on \([0,1]^2\) with \(f \in L^p([0,1]^2) \) if and only if \(p < 2 \), which is sharp except at the endpoint. It remains unknown to me if we can find \(f \in L^p_{loc}(\mathbb{R}^2) \) with this property.
Main difficulty: one has to construct a function \(f \) and a set \(E \) of positive Lebesgue measure so that \(f \) is not continuous or bounded in any tiny neighbourhood of any \(x \in E \).

Outline of my idea: we first construct a Cantor-like set \(C \) in \([0,1]\) but with positive Lebesgue measure. Then \(C^c \) is a union of countably many open intervals \(\{I_j\} \) with disjoint closures. Thus \(C^c \times C^c \) is a union of countably many open rectangles \(\{T_{j,k}\} \) with disjoint closures. We then define a function \(f \) which takes some suitable value \(a_{j,k} \) on \(T_{j,k} \) such that \(f \in L^p([0,1]^2) \) for all \(0 < p < 2 \). Next, using the geometry of the circle, we will show \(\lim \sup_{r \to 0+} A_r f(x) > 0 = f(x) \) for all \(x \in C \times C \). Since \(C \times C \) has positive 2 dimensional Lebesgue measure, we are done.

0.1 A General Decimal Expansion

For \(k \geq 1 \), let \(M_k \geq 3 \) be integers. Then each real number \(x \in [0,1] \) has the following general decimal expansion corresponding to \(\{M_k\} \):

\[
x = \sum_{k=1}^{\infty} \frac{x_k}{\prod_{j=1}^{k} M_j}, \quad x_k \in \{0,1,\ldots,M_k-1\}.
\]

Each \(x \) has at most 2 different expansions. Moreover, the numbers \(x \in [0,1) \) with 2 different expansions are exactly those which has a terminating decimal expansion; if a number cannot be represented as a terminating decimal number, then it has a unique general decimal expansion.

For an example, let us take \(M_k = 10 \) for all \(k \), which corresponds to our usual decimal expansion. The number 0.1 can also be represented as 0.099999 \ldots , so 0.1 has two decimal expansions. In comparison, the number \(\pi/10 \) has only one decimal expansion.

We are interested in the subset \(C_k \subseteq [0,1] \) that consists of all numbers \(x \in [0,1] \) such that either decimal expansion of \(x \) has \(x_k \neq 1 \). For example, if we take \(M_k = 3 \) for all \(k \), then \(C_1 \) is exactly the union of two closed intervals \([0,1/3] \cup [2/3,1]\). Specially, notice that the number 1/3 can be represented by

\[
\frac{1}{3} = 0.1(3) = 0.02222222\ldots(3),
\]

and since the latter expansion does not have a 1 on the first decimal place, we include 1/3 \(\in C_1 \).

Having constructed \(C_k \), we then consider the general Cantor set \(C \) defined by \(C = \cap_{k=1}^{\infty} C_k \). Equivalently, \(C \) consists of the numbers \(x \in [0,1] \) such that either decimal expansion of \(x \) omits the digit 1 entirely. For instance, if \(M_k = 3 \) for all \(k \), then this \(C \) is exactly the standard middle-third Cantor set on the real line. In the general setting, \(C \) will still be an uncountable, compact, perfect and totally disconnected set. Lastly, note that \(\{0,1\} \subseteq C \) and the complement of \(C \) in \([0,1]\) is a countable union of open intervals with disjoint closures.

The key difference from the standard case is that now \(C \) may have positive Lebesgue measure. More precisely, we have the following criterion:

Proposition 1. Let \(M_k \geq 3 \) and \(C \) be the set of the numbers \(x \in [0,1] \) such that either decimal expansion of \(x \) corresponding to \(\{M_k\} \) omits the digit 1 entirely. Then \(|C| > 0 \) if
and only if
\[\sum_{k=1}^{\infty} \frac{1}{M_k} < \infty. \]

Proof. We have
\[|C_1| = 1 - \frac{1}{M_1}, \quad |C_1 \cap C_2| = \left(1 - \frac{1}{M_1}\right) \left(1 - \frac{1}{M_2}\right), \]
and in general,
\[|\cap_{j=1}^k C_j| = \prod_{j=1}^k \left(1 - \frac{1}{M_j}\right). \]

Hence \(|C| > 0\) if and only if \(\sum_{k=1}^{\infty} \frac{1}{M_k} < \infty\) by the following elementary lemma in analysis.

\[\square \]

Lemma 1. Let \(\epsilon_k \in (0, 1)\) be a sequence. Then \(\prod_{k=1}^{\infty} (1 - \epsilon_k) > 0\) if and only if \(\sum_{k=1}^{\infty} \epsilon_k < \infty\).

The proof of the lemma is an easy exercise using \(\log(1 - x) \sim x\) for \(x \in (0, 1/2)\).

0.2 Construction of the Function

We start with some notation. With \(M_k\) to be specified below, we recall the construction of \(C\) depending on \(M_k\).

Let \(S_k = \prod_{j=1}^{k} M_j\) \((S_0 := 0)\). At the \(k\)-th level of construction, we are removing an open interval from each of the \(S_{k-1}\) remaining closed intervals that make up \(\cap_{j=1}^{k-1} C_j\). We will call the open intervals being removed at the \(k\)-th stage \(I_{k,l}\), where \(1 \leq l \leq S_{k-1}\). Let \(I\) denote the countable collection of all such intervals \(I_{k,l}\), \(k \geq 1\), \(1 \leq l \leq S_{k-1}\). At the same level \(k\), each \(I_{k,l}\) has the same length \(l_k = S_{k-1}^{-1}\).

We need to upgrade the previous setting to \(\mathbb{R}^2\). For each pair of intervals \((I \times J) \in I \times I\), we consider the open rectangle \(T_{I,J} = I \times J\). We observe that \(\{T_{I,J} : (I, J) \in I \times I\}\) is a countable collection of open rectangles with disjoint closures.

We now specify the parameters we will use.

Define
\[M_k = 2^{k+1}. \tag{2} \]

Then \(\sum_k M_k^{-1} < \infty\) and thus \(|C| > 0\).

Define
\[f(x) = \sum_{I,J \in I} a_{I,J} 1_{T_{I,J}} \]
where
\[a_{I,J} = \begin{cases} M_i, & \text{if } I = I_{i,l}, J = I_{i,l'}, \text{ for some } i, l, l', \\ 0, & \text{otherwise}. \end{cases} \]

Thus only perfect squares \(T_{I,J}\) will contribute to the mass of \(f\).
Note that at level k of construction, we remove fewer than S_{k-1} intervals $I_{k,l}$ having the same length S_k^{-1}.

Thus

$$\|f\|_p^p \leq \sum_{k=1}^{\infty} S_{k-1}^2 M_k^p S_k^{-2} = \sum_{k=1}^{\infty} M_k^{p-2},$$

which is finite if and only if $p < 2$.

0.3 Proof of Divergence

Let $(x, y) \in C \times C$. Then by definition, $f(x, y) = 0$. We will show that $\limsup_{r \to 0^+} A_r f(x, y) > 0$ by choosing a suitable subsequence r_k. Since $C \times C$ has positive Lebesgue measure, this proves our claim.

0.3.1 A simple case

As a simple example, let us assume $x = y = 0$ to illustrate the main idea.

Fix $k \geq 1$. We consider the interval $I = I_{k,1} = (S_k^{-1}, 2S_k^{-1}) \in \mathcal{I}$, that is, the collection of all $x \in [0, 1]$ of the form (except for the endpoints of I)

$$x = 0.0000 \cdots 01\cdots, \text{(the } k\text{-th digit is 1)}$$

Let $J = I$ as well. Consider the circle γ centred at 0 that passes through the upper-left corner of the square $I \times J$. Then the length of the arc inside $I \times J$ is comparable to S_k^{-1}.

Thus we have $r_k = \sqrt{S_k^{-2} + (2S_k^{-1})^2} = \sqrt{3}S_k^{-1}$. This implies

$$A_{r_k} f(0, 0) = (2\pi r_k)^{-1} \int_{\gamma} f(x, y) dx dy \geq r_k^{-1} S_k^{-1} a_{I,J} \sim M_k > 1.$$

0.3.2 The general case

Now we come to the general case where $(x, y) \in C \times C$. Write

$$x = \sum_{k=1}^{\infty} \frac{x_k}{S_k}, \quad y = \sum_{k=1}^{\infty} \frac{y_k}{S_k}, \quad x_k, y_k \in \{0, 1, \ldots, M_k - 1\},$$

since $a_{I,J} = M_k$.

Fix $k \geq 1$. We take $I = (x - (x_k - 1)S_k^{-1}, x - (x_k - 2)S_k^{-1}) \in \mathcal{I}$, and $J = (y - (y_k - 1)S_k^{-1}, y - (y_k - 2)S_k^{-1}) \in \mathcal{I}$. Let γ be the circle centred at (x, y) that passes through a vertex of $I \times J$ that is neither the closest nor the farthest to (x, y); this ensures that the
arc inside the square $I \times J$ has length comparable to S_k^{-1}. We have 4 cases according as whether $x_k = 0$ and whether $y_k = 0$, but in all the cases we have

$$r_k \leq \sqrt{\max\{(x_k - 1)^2, (x_k - 2)^2\} + \max\{(y_k - 1)^2, (y_k - 2)^2\}}S_k^{-1}
\lesssim M_k S_k^{-1} = S_k^{-1}.$$

Let $\gamma = C_{r_k}(x, y)$ denote the circle with centre (x, y) and radius r_k.

Hence we have

$$A_{r_k}f(x, y) = (2\pi r_k)^{-1} \int_{\gamma} f(u, v)dudv
\gtrsim r_k^{-1} S_k^{-1} a_{I, J}
\sim M_k^{-1} M_k = 1,$$

since $a_{I, J} = M_k$.