Math 120 Homework 8 Solutions

In this homework, you will construct a rather strange function.

1. Prove that if $P(x)$ is a polynomial, then
 \[\lim_{x \to 0^+} P(1/x) e^{-\frac{1}{x}} = 0 \]

 Solution. Recall from HW 4 #2b that if $g(x) = 1/x$ and if $\lim_{x \to \infty} f \circ g(x) = L$, then $\lim_{x \to 0^+} f(x) = L$. Let $f(x) = P(\frac{1}{x}) e^{-\frac{1}{x}}$. Then if $x \neq 0$, $f \circ g(x) = P(x)e^{-x} = P(x)/e^x$. We proved in lecture that $\lim_{x \to \infty} f \circ g(x) = 0$, and thus $\lim_{x \to 0^+} f(x) = 0$.

2. Let $P(x) = a_n x^n + \ldots + a_0$ be a polynomial and let $f(x) = P(1/x)$. Prove that there exists a polynomial $Q(x)$ so that for all $x \neq 0$,
 \[f'(x) = Q(1/x). \]

 Solution. We have
 \[f(x) = a_n x^{-n} + a_{n-1} x^{-(n-1)} + \ldots + a_1 x^{-1} + a_0. \]
 We proved in class (using the quotient rule) that if $f(x) = x^{-k}$, then $f'(x) = -kx^{-k-1}$ for all $x \neq 0$. Thus using the sum rule for derivatives, we have that for all $x \neq 0$,
 \[f'(x) = a_n(-n)x^{-n-1} + a_{n-1}(-n-1)x^{-n} + \ldots + a_1(-1)x^{-2}. \]

 Thus if we define
 \[Q(x) = -na_n x^{n+1} - (n-1)a_{n-1} x^n - (n-2)a_{n-2} x^{n-1} - \ldots - a_1 x^{-2}, \]
 then $f'(x) = Q(1/x)$ for all $x \neq 0$.

3. $P(x) = a_n x^n + \ldots + a_0$ be a polynomial and let $g(x) = P(1/x)e^{-1/x}$. Prove that there exists a polynomial $R(x)$ so that for all $x \neq 0$,
 \[g'(x) = R(1/x)e^{-1/x}. \]

 Solution. Let $P(x) = a_n x^n + \ldots + a_0$ and let $f(x) = P(1/x)$. Note that both $f(x)$ and $e^{-1/x}$ are differentiable for $x \neq 0$. Using the product rule, we have that
 \[g'(x) = f'(x)e^{-1/x} + f(x)(e^{-1/x})' = (f'(x) + f(x) \cdot (-1/x^2))e^{-1/x} \]

 By problem 2, we have that there exits a polynomial $Q(x) = b_m x^m + \ldots + b_1$ so that $f'(x) = Q(1/x)$ for all $x \neq 0$. Define
 \[R(x) = Q(x) - x^2 P(x) = (b_m x^m + \ldots + b_1) - (a_n x^{n+2} + a_{n-1} x^{n+1} + \ldots + a_0 x^2). \]
 This is clearly a polynomial, and $R(1/x) = f'(x) - (1/x^2)f(x)$ for all $x \neq 0$, so
 \[g'(x) = R(1/x)e^{-1/x} \]
for all $x \neq 0$.

4. Prove by induction that for each integer $n \geq 1$, there exists a polynomial $R_n(x)$ so that if $f(x) = e^{-1/x}$, then

$$f^{(n)}(x) = R_n(1/x)e^{-1/x}.$$

for all $x \neq 0$.

Solution.

First we will do the base case. If $n = 1$, then $f^{(1)}(x) = (-1/x^2)e^{-1/x}$, so the result is true with $R_1(x) = -x^2$.

Next we will do the induction step. Suppose the result has been proved for some integer $n \geq 1$. Then for all $x \neq 0$,

$$f^{(n+1)}(x) = (f^{(n)}(x))' = (R_n(1/x)e^{-1/x})' = R_{n+1}(1/x)e^{-1/x}.$$

For the last inequality we used Problem 3 (with $P(x) = R_n(x)$), and we define R_{n+1} to be the output polynomial R from problem 3. This completes the induction step and thus completes the proof.

5. Define

$$g(x) = \begin{cases} 0, & x \leq 0, \\ e^{-1/x}, & x > 0. \end{cases}$$

a. Prove that for every number n, g is n-times differentiable on \mathbb{R} (i.e. $g^{(n)}(x)$ exists for every $x \in \mathbb{R}$).

b. Prove that $g^{(n)}(0) = 0$ for every non-negative integer $n = 1, 2, \ldots$.

Solution.

a. Since $g(x) = 0$ if $x < 0$, by the limits are a local property rule we have that $g^{(n)}(x) = 0$ if $x < 0$. Similarly, since $g(x) = e^{-1/x}$ if $x > 0$, by the limits are a local property rule and Problem 4, we have that $g^{(n)}(x) = R_n(1/x)e^{-1/x}$ if $x > 0$, where R_n is the polynomial from problem 4. In particular, we know that for each integer $n \geq 1$, g is n times differentiable at x for all $x \neq 0$. In part b below, we will show that g is n times differentiable at 0.

b. We will prove by induction on n that $g^{(n)}(0) = 0$ for all n, so in particular, g is n times differentiable at 0. We will begin with $n = 0$. Since $g(x)$ is defined for all $x \in \mathbb{R}$, $g(x)$ is 0-times differentiable at 0, and $g^{(0)}(0) = g(0) = 0$. Now suppose we have shown that $g^{(n)}(0) = 0$. In order to prove that $g^{(n+1)}(0) = 0$, it suffices to prove that

$$\lim_{x \to 0^-} \frac{g^{(n)}(x) - g^{(n)}(0)}{x} = \lim_{x \to 0^+} \frac{g^{(n)}(x) - g^{(n)}(0)}{x} = 0.$$

Since $g^{(n)}(0) = 0$ and $g^{(n)}(x) = 0$ for all $x < 0$, we have $\lim_{x \to 0^-} \frac{g^{(n)}(x) - g^{(n)}(0)}{x} = 0$. Since $g^{(n)}(x) = R_n(1/x)e^{-1/x}$ for all $x > 0$ (here R_n is the polynomial from Problem 4), we have

$$\lim_{x \to 0^+} \frac{g^{(n)}(x) - g^{(n)}(0)}{x} = \lim_{x \to 0^+} \frac{1}{x}R_n(1/x)e^{-1/x} = 0,$$

where for the last equality we used Problem 1. This completes the induction step and finishes the proof.
6. Let \(f \) and \(g \) be functions that are differentiable on \((0, \infty)\). Suppose that \(f \) and \(g \) satisfy the functional equations

\[
\begin{align*}
 f(xy) &= f(x) + f(y) \quad \text{for all } x, y \in (0, \infty), \\
 g(xy) &= g(x) + g(y) \quad \text{for all } x, y \in (0, \infty),
\end{align*}
\]

and that \(f'(1) = g'(1) \).

a. Prove that \(f'(x) = g'(x) \) for all \(x \in (0, \infty) \).

b. Prove that \(f(x) = g(x) \) for all \(x \in (0, \infty) \).

Remark This problem establishes that there is one function satisfying \(f(xy) = f(x) + f(y) \) and \(f'(1) = 1 \). Thus Euler’s number \(e \) is well defined.

Solution

a. In lecture, we proved that if \(f \) is differentiable for all \(x \in (0, \infty) \) and satisfies \(f(xy) = f(x) + f(y) \) for all \(x, y \in (0, \infty) \), then for each \(x \in (0, \infty) \) we have \(f'(x) = f'(1)/x \). The same reasoning shows that \(g'(x) = g'(1)/x \). Thus if \(f'(1) = g'(1) \), we conclude that \(f'(x) = g'(x) \) for all \(x \in (0, \infty) \).

b. Since \(f'(x) = g'(x) \) for all \(x \in (0, \infty) \), we have that \((f - g)'(x) = 0 \) for all \(x \in (0, \infty) \). In lecture, we proved that if \(f \) is differentiable for all \(x \in (0, \infty) \) and satisfies \(f(xy) = f(x) + f(y) \) for all \(x, y \in (0, \infty) \), then \(f(1) = 0 \). Similarly, \(g(1) = 0 \). This means that \((f - g)(1) = 0 \).

Now, let \(x \in (0, \infty) \) with \(x \neq 1 \). By the mean value theorem applied to \(h = f - g \), there exists a point \(c \) in the interval between 1 and \(x \) so that \((f - g)(x) - (f - g)(1) = (f - g)'(c)(x - 1) = 0(x - 1) = 0 \). We conclude that \((f - g)(x) = (f - g)(1) = 0 \), i.e. \((f - g)(x) = 0 \) for all \(x \in (0, \infty) \). Hence \(f(x) = g(x) \) for all \(x \in (0, \infty) \).