Math 120 Homework 10 Solutions

1. Graph the function \(f(x) = \arctan(\tan(x)) \) for all \(x \) in \(D(f) \cap [-4\pi, 4\pi] \). You do not need to prove that your graph is correct, but draw it carefully—mark your \(x \) and \(y \) axes, scale things properly, and be sure to get the domain correct.

\[\text{Solution.} \]

2. Prove that

\(\sinh(x + y) = \sinh(x) \cosh(y) + \cosh(x) \sinh(y) \),

and

\(\cosh(x + y) = \cosh(x) \cosh(y) + \sinh(x) \sinh(y) \).

\[\text{Solution. We have} \]

\[\sinh(x + y) = \frac{1}{2} (e^{x+y} - e^{-(x+y)}) = \frac{1}{2} (e^x e^y - e^{-x} e^{-y}) = \frac{1}{4} ((e^x - e^{-x})(e^y + e^{-y}) + (e^x + e^{-x})(e^y - e^{-y})) = \sinh(x) \cosh(y) + \cosh(x) \sinh(y). \]

A similar computation shows that \(\cosh(x + y) = \cosh(x) \cosh(y) + \sinh(x) \sinh(y) \). (you should do this computation)

3. At which points on the ellipse \(x^2 + 3y^2 = 1 \) is the tangent line parallel to the line \(y = x \)? Prove that your answer is correct.

\[\text{Solution. The line } y = x \text{ has slope 1. We need to find all point } (x, y) \text{ on the curve } x^2 + 3y^2 = 1 \text{ where the curve has slope 1. If we regard } y = y(x) \text{ as a function of } x, \text{ then we have} \]

\[0 = \frac{d}{dx}(x^2 + 3y^2) = 2x + 6y \frac{dy}{dx} \]
re-arranging, we obtain
\[\frac{dy}{dx} = \frac{-2x}{6y} = -\frac{x}{3y}, \]
whenever \(y \neq 0 \). Solving \(-x/3y = 1, \ x^2 + 3y^2 = 1 \) we obtain the single equation \(12y^2 = 1 \), or \(y = \pm 1/\sqrt{12} \). The corresponding points are \((\sqrt{3}/2, -1/\sqrt{12}) \) and \((-\sqrt{3}/2, 1/\sqrt{12}) \). However, this reasoning is only valid if \(y \neq 0 \). There are two points on the curve \(x^2 + 3y^2 = 1 \) where \(y = 0 \); the points are \((1, 0) \) and \((-1, 0) \). At both these points the tangent line to the curve \(x^2 + 3y^2 = 1 \) is vertical, so it is not parallel to the line \(y = x \).

Thus the two points where the ellipse \(x^2 + 3y^2 = 1 \) is the tangent line parallel to the line \(y = x \) are \((\sqrt{3}/2, -1/\sqrt{12}) \) and \((-\sqrt{3}/2, 1/\sqrt{12}) \).

4. Compute the slope of the tangent line of the curve \(y^5 + 2xy^3 + 3x^2y + 10x = 16 \) at the point \((1, 1) \).

Solution. If we regard \(y \) as a function of \(x \) and use implicit differentiation, then
\[
0 = \frac{d}{dx}(y^5 + 2xy^3 + 3x^2y + 10x) = 5y^4 \frac{dy}{dx} + 2y^3 + 6xy^2 \frac{dy}{dx} + 6xy + 3x^2 \frac{dy}{dx} + 10.
\]
re-arranging, we get
\[\frac{dy}{dx} = \frac{-2y^3 + 6xy + 10}{5y^4 + 6xy^2 + 3x^2} \]
whenever the denominator is non-zero. Plugging in \((x, y) = (1, 1)\), the denominator is \(5 + 6 + 3 = 14 \neq 0 \), so we can compute
\[\frac{dy}{dx} = \frac{-2 + 6 + 10}{5 + 6 + 3} = -\frac{9}{7}. \]

5. Use L’Hôpital’s rule to prove the following

(a) Prove that if \(f \) and \(g \) are polynomials with \(f(x) = a_n x^n + \ldots + a_0 \) and \(g(x) = b_n x^n + \ldots + b_0 \), with \(a_n \neq 0, b_n \neq 0 \), then
\[\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{a_n}{b_n}. \]

(b) Prove that if \(f \) and \(g \) are polynomials with \(\deg(g) > \deg(f) \), then
\[\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0. \]

Solution

a. We will prove the result by induction on \(n \). The base case \(n = 0 \) is trivial: we have \(f(x) = a_0 \) and \(g(x) = a_0 \), so
\[\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{a_0}{b_0} = a_0/b_0. \]

Next, suppose the result has been proved for all pairs of polynomials of degree at most \(n \), and let \(f \) and \(g \) be polynomials of degree \(n + 1 \). Since \(\deg f \geq 1 \), the limit rule for quotients of polynomials (proved in lecture) says that \(\lim_{x \to \infty} f(x) = \infty \) or \(-\infty \). Similarly, \(\lim_{x \to \infty} g(x) = \infty \) or \(-\infty \). We proved in lecture that for any polynomial \(g \), there exists a number \(R > 0 \) so that if \(x > R \) then
\(g(x) \neq 0 \). Thus \(\lim_{x \to \infty} \frac{f(x)}{g(x)} \) is of the indeterminate form \(\pm \infty \), and L’Hopital’s rule can be applied. If \(f(x) = a_{n+1}x^{n+1} + a_nx^n + \ldots + a_0 \), then \(f'(x) = (n+1)a_{n+1}x^n + na_nx^{n-1} + \ldots + a_1 \), and similarly if \(g(x) = b_{n+1}x^{n+1} + b_nx^n + \ldots + b_0 \), then \(g'(x) = (n+1)b_{n+1}x^n + nb_nx^{n-1} + \ldots + b_1 \). These are polynomials of degree \(n \), so by the induction assumption,

\[
\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{(n+1)a_{n+1}}{(n+1)b_{n+1}} = \frac{a_{n+1}}{b_{n+1}}.
\]

Thus by L’Hopital’s rule,

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{a_{n+1}}{b_{n+1}},
\]

which completes the induction step and finishes the proof.

b. We will again prove the result by induction on the degree of \(f \). If \(f(x) = a_0 \) has degree 0, then since \(g \) has degree > 0, we have \(\lim_{x \to \infty} |g(x)| = \infty \), so \(\lim_{x \to \infty} f(x)/g(x) = \lim_{x \to \infty} a_0/g(x) = 0 \). Now suppose the result has been proved for all pairs of polynomials where the numerator has degree \(\leq n \), and let \(f, g \) be polynomials where \(\deg f = n + 1 \) and \(\deg(g) > \deg(f) \). The same argument from part a shows that we may apply L’hopital’s rule to conclude that

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = 0,
\]

where for the second equality we used the induction assumption, since \(\deg f' = n \) and \(\deg g' > \deg f' \). This completes the induction step and concludes the proof.