Math 120 Homework 10

- Not to be handed in. However, you are strongly encouraged to complete this homework, since this material will be part of the final exam.

1. Graph the function $f(x)=\arctan (\tan (x))$ for all x in $D(f) \cap[-4 \pi, 4 \pi]$. You do not need to prove that your graph is correct, but draw it carefully-mark your x and y axes, scale things properly, and be sure to get the domain correct.
2. Prove that

$$
\sinh (x+y)=\sinh (x) \cosh (y)+\cosh (x) \sinh (y),
$$

and

$$
\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y)
$$

3. At which points on the ellipse $x^{2}+3 y^{2}=1$ is the tangent line parallel to the line $y=x$? Prove that your answer is correct.
4. Compute the slope of the tangent line of the curve $y^{5}+2 x y^{3}+3 x^{2} y+10 x=16$ at the point $(1,1)$.
5. Use L'Hopital's rule to prove the following
(a) Prove that if f and g are polynomials with $f(x)=a_{n} x^{n}+\ldots+a_{0}$ and $g(x)=b_{n} x^{n}+\ldots+b_{0}$, with $a_{n} \neq 0, b_{n} \neq 0$, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=a_{n} / b_{n} .
$$

(b) Prove that if f and g are polynomials with $\operatorname{deg}(g)>\operatorname{deg}(f)$, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

