Math 120 Homework 4

• Due Friday October 13 at start of class.

• If your homework is longer than one page, staple the pages together, and put your name on each sheet of paper. Homework lacking a staple will lose 2 points.

• Each homework problem should be correct as stated. Occasionally, however, I might screw something up and give you an impossible homework problem. If you believe a problem is incorrect, please email me. If you are right, the first person to point out an error will get +1 on that homework, and I will post an updated version.

Recall that in HW 3, you were asked to give an example of functions \(f \) and \(g \) so that \(\lim_{x \to 1} g(x) = 1 \), \(\lim_{x \to 1} f(x) = 1 \), but \(\lim_{x \to 1} f \circ g(x) \neq 1 \).

1. Let \(f \) and \(g \) be functions whose domain is \(\mathbb{R} \). Suppose that \(f(1) = 1 \); \(f \) is continuous at 1, and \(\lim_{x \to 1} g(x) = 1 \). Prove that
 \[
 \lim_{x \to 1} f \circ g(x) = 1.
 \]

2. This problem shows a relationship between one-sided limits and limits at infinity. Let \(g(x) = 1/x \). Let \(f(x) \) be a function and suppose that \((0, \infty) \subset D(f) \).
 a. Suppose that \(\lim_{x \to 0^+} f(x) = L \). Prove that \(\lim_{x \to \infty} f \circ g(x) = L \) (don’t forget to establish both requirements for the limit to exist).
 b. Suppose that \(\lim_{x \to \infty} f \circ g(x) = L \). Prove that \(\lim_{x \to 0^+} f(x) = L \).

3. Let \(f \) and \(g \) be functions, and suppose \(f \) and \(g \) are continuous (in particular, this means \(D(f) = \mathbb{R}, D(g) = \mathbb{R} \)). Suppose that for every rational number \(x \in \mathbb{Q} \), we have \(f(x) = g(x) \). Prove that \(f(x) = g(x) \) for every number \(x \in \mathbb{R} \).

4 a. Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \) be a polynomial. Suppose that \(a_n > 0 \) and \(a_0 < 0 \). Prove that there exists a point \(x \in \mathbb{R} \) with \(f(x) = 0 \).

b. Give an example of a non-constant polynomial \(f \) (i.e. the polynomial must have degree at least one) so that \(f(x) \neq 0 \) for all \(x \in \mathbb{R} \). You do not have to prove that your example is correct.