Homework 2 Solutions

1. Determine whether the following statements are logically equivalent, using truth tables.

 (a) $(\sim P) \lor Q$ and $P \Rightarrow Q$.

 \[
 \begin{array}{c|c|c|c|c}
 P & Q & (\sim P) & (\sim P) \lor Q & P \Rightarrow Q \\
 T & T & F & T & T \\
 T & F & F & F & T \\
 F & T & T & T & T \\
 F & F & T & T & T \\
 \end{array}
 \]

 These are logically equivalent.

 (b) $P \Leftrightarrow Q$ and $(\sim P) \Leftrightarrow (\sim Q)$.

 \[
 \begin{array}{c|c|c|c|c|c|c}
 P & Q & \sim P & \sim Q & P \Leftrightarrow Q & (\sim P) \Leftrightarrow (\sim Q) \\
 T & T & F & F & T & T \\
 T & F & F & T & F & F \\
 F & T & T & F & F & F \\
 F & F & T & T & T & T \\
 \end{array}
 \]

 These are logically equivalent.

 (c) $P \Rightarrow (Q \lor R)$ and $P \Rightarrow (\sim Q \Rightarrow R)$.

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c|c}
 P & Q & R & Q \lor R & (\sim Q) \Rightarrow R & P \Rightarrow (Q \lor R) & P \Rightarrow (\sim Q) \Rightarrow R \\
 T & T & T & T & T & T & T \\
 T & T & F & T & T & T & T \\
 T & F & T & T & T & T & T \\
 F & T & T & T & T & T & T \\
 T & F & F & F & F & F & F \\
 F & T & F & T & T & T & T \\
 F & F & T & T & T & T & T \\
 F & F & F & F & T & T & T \\
 \end{array}
 \]

 These are logically equivalent.

 (d) $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$.

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
 P & Q & R & P \lor Q & P \Rightarrow R & Q \Rightarrow R & (P \lor Q) \Rightarrow R & (P \Rightarrow R) \land (Q \Rightarrow R) \\
 T & T & T & T & T & T & T & T \\
 T & T & F & T & F & F & F & F \\
 T & F & T & T & T & T & T & T \\
 F & T & T & T & T & T & T & T \\
 T & F & F & T & F & F & F & F \\
 F & T & F & T & F & F & F & F \\
 F & F & T & T & T & T & T & T \\
 F & F & F & T & T & T & T & T \\
 \end{array}
 \]

 These are logically equivalent.
2. Prove that if \(n \in \mathbb{Z} \) and \(n^2 + 4n + 5 \) is odd, then \(n \) is even.

Proof: (Proof by contrapositive) Assume that \(n \) is odd. Then we see that \(n = 2k + 1 \) for some \(k \in \mathbb{Z} \). Thus, \(n^2 + 4n + 5 = (2k + 1)^2 + 4(2k + 1) + 5 = 2(2k^2 + 6k + 3) \). Since \((2k^2 + 6k + 3) \in \mathbb{Z} \), we see that \(n^2 + 4n + 5 \) is even.

\(\square \)

3. Prove that if \(n, m \in \mathbb{Z} \) and \(n^2 + m^2 \) is even, then \(n, m \) have the same parity.

Proof: (Proof by contrapositive) Assume \(n, m \) have opposite parities. The we have two cases; either \(n \) is even and \(m \) is odd, or \(m \) is even and \(n \) is odd. Since the statement and the cases are symmetric with respect to \(n \) and \(m \), WLOG we can assume \(n \) is even and \(m \) is odd. In this case, we can write \(n = 2a \) and \(m = 2b + 1 \) for some \(a, b \in \mathbb{Z} \). Hence, \(n^2 + m^2 = (2a)^2 + (2b + 1)^2 = 4a^2 + 4b^2 + 4b + 1 = 2(2a^2 + 2b^2 + 2b) + 1 \). Since \((2a^2 + 2b^2 + 2b) \in \mathbb{Z} \), we see that \(n^2 + m^2 \) is odd.

\(\square \)

4. Prove that if \(n \) is an even integer than \(n = 4k \) or \(n = 4k + 2 \) for some integer \(k \).

Proof: Assume \(n \) is an even integer. Then we see \(n = 2a \) for some \(a \in \mathbb{Z} \). Since \(a \in \mathbb{Z} \) we see that \(a \) is either even or odd.

Case 1: \(a \) is even: In this case, we see that \(a = 2m \) for some \(m \in \mathbb{Z} \). Thus, \(n = 2a = 2(2m) = 4m \) for some integer \(m \).

Case 2: \(a \) is odd: In this case, we see that \(a = 2t + 1 \) for some \(t \in \mathbb{Z} \). Thus, \(n = 2a = 2(2t + 1) = 4t + 2 \) for some integer \(t \).

Therefore, if \(n \) is an even integer than \(n = 4k \) or \(n = 4k + 2 \) for some integer \(k \).

\(\square \)

5. Let \(a \in \mathbb{Z} \). Prove that \(3 \mid 5a \) if and only if \(3 \mid a \).

Proof: This is a biconditional statement. Hence, we need to prove both implications:

\[(3 \mid 5a) \implies (3 \mid a) \text{ and } (3 \mid 5a) \implies (3 \mid a) \]

Proof of \((3 \mid a) \implies (3 \mid 5a) \): Assume that \(3 \mid a \). Then we see that \(a = 3k \) for some \(k \in \mathbb{Z} \). Hence, \(5a = 5(3k) = 3(5k) \). Since \(5k \in \mathbb{Z} \), we get \(3 \mid 5a \).

Proof of \((3 \mid 5a) \implies (3 \mid a) \): Assume that \(3 \mid 5a \). This implies \(5a = 3m \) for some \(m \in \mathbb{Z} \). Therefore we see that by adding \(a \) to both sides, we get \(6a = 3m + a \). Thus, \(a = 6a - 3m = 3(2a - m) \). Since \((2a - m) \in \mathbb{Z} \), we see \(3 \mid a \).

\(\square \)
6. Use the logical equivalences given in class to negate the following sentences

(a) 8 is even and 5 is prime.
This statement can be written as \(P \land Q \) for
P: “8 is even”, and
Q: “5 is prime”. Then its negation is
\[\sim(P \land Q) \equiv (\sim P) \lor (\sim Q). \]
Then, we can write the negation as:
“8 is not even or 5 is not prime”.

(b) If \(n \) is a multiple of 4 and 5, then it is a multiple of 10.
This statement can be written as \((P \land Q) \implies R \) for
P: “\(n \) is a multiple of 4”,
Q: “\(n \) is a multiple of 5”, and
R: “\(n \) is a multiple of 10”. Then its negation is
\[\sim((P \land Q) \implies R) \equiv \sim((P \land Q) \lor R) \equiv (P \land Q) \land \sim R. \]
Then, we can write the negation as:
“\(n \) is a multiple of 4 and 5, but it is not a multiple of 10”.

(c) \(3 \leq x \leq 6 \).
This open sentence can be written as \(P \land Q \) for
P: “\(x \geq 3 \)”, and
Q: “\(x \leq 6 \)”. Then its negation is
\[\sim(P \land Q) \equiv (\sim P) \lor (\sim Q). \]
Then, we can write the negation as:
“\(x < 3 \) or \(x > 6 \)”.

(d) A real number \(x \) is less than \(-2\) or greater than \(2\) if its square is greater than \(4\).
This statement can be written as \(R \implies (P \lor Q) \) for
P: “\(x \) is less than \(-2\)”,
Q: “\(x \) greater than 2”, and
R: “\(x^2 \) is greater than \(4\)”. Then its negation is
\[\sim(R \implies (Q \lor P)) \equiv \sim((\sim R) \lor (Q \land P)) \equiv R \land ((\sim Q) \land (\sim P)). \]
Then, we can write the negation as:
“The square of a real number \(x \) is greater than 4 and \(x \) is greater than or equal to \(-2\), and less than or equal to \(2\)”.

(e) If a function \(f \) is differentiable everywhere then whenever \(x \in \mathbb{R} \) is a local maximum of \(f \) we have \(f'(x) = 0 \).
This statement can be written as \(P \implies (Q \implies R) \) for
P: “\(f \) is differentiable everywhere”,
Q: “\(x \) is a local maximum of \(f \)”, and
R: “\(f'(x) = 0 \)”. Then its negation is
\[\sim(P \implies (Q \implies R)) \equiv \sim((\sim P) \lor (\sim Q) \lor (\sim R)) \equiv P \land (Q \land (\sim R)). \]
Then, we can write the negation as:
“A function \(f \) is differentiable everywhere and \(x \in \mathbb{R} \) is a local maximum of \(f \), but \(f'(x) \neq 0 \).”

7. Assume \(a, b \in \mathbb{Z} \). Prove that if \(ax + by = 1 \) for some \(x, y \in \mathbb{Z} \), then \(\gcd(a, b) = 1 \).

Proof: (Proof by contrapositive) Let \(a, b \in \mathbb{Z} \). Assume that \(\gcd(a, b) \neq 1 \). Then we have two cases:

- either \(\gcd(a, b) \) doesn’t exist, or \(\gcd(a, b) = m \neq 1 \).

We see that if \(\gcd(a, b) \) doesn’t exist, that means that \(a = b = 0 \), in which case there are no integers \(x, y \) such that \(ax + by \neq 0 \).

If \(\gcd(a, b) = m \neq 1 \), then we see that \(m \) is a common divisor of both \(a \) and \(b \). Thus, \(a = ms \) and \(b = mt \) for some \(s, t \in \mathbb{Z} \). Therefore, for any \(x, y \in \mathbb{Z} \), we have \(ax + by = msx + mty = m(sx + ty) \).
Since \((sx + ty) \in \mathbb{Z}\), we see that \(m \mid (ax + by)\), and therefore \(m \leq |ax + by|\). Since \(m > 1\), we get that \(ax + by \neq 1\) whenever \(x, y \in \mathbb{Z}\).

8. Without using the triangle inequality, prove that if \(x \in \mathbb{R}\), then \(|x + 4| + |x - 3| \geq 7\).

Proof: We see that the statement involves the expressions \(|x + 4|\) and \(|x - 3|\). Thus, we need to understand when the expressions \((x + 4)\) and \((x - 3)\) change signs. To do that, we need to consider three cases: \(x < -4\), \(-4 \leq x \leq 3\), and \(x > 3\).

Case 1: \(x < -4\): In this case, we see that \(|x + 4| = -x - 4\) and \(|x - 3| = 3 - x\). Therefore, \(|x + 4| + |x - 3| = (-x - 4) + (3 - x) = -2x - 1\). Moreover, since \(x < 4\), we see \(-2x - 1 \geq 7\) which implies \(|x + 4| + |x - 3| \geq 7\).

Case 2: \(-4 \leq x \leq 3\): In this case, we see that \(|x + 4| = x + 4\) and \(|x - 3| = 3 - x\). Therefore, \(|x + 4| + |x - 3| = (x + 4) + (3 - x) = 7\). Hence, \(|x + 4| + |x - 3| \geq 7\).

Case 3: \(x > 3\): In this case, we see that \(|x + 4| = x + 4\) and \(|x - 3| = x - 3\). Therefore, \(|x + 4| + |x - 3| = (x + 4) + (x - 3) = 2x + 1\). Moreover, since \(x > 3\), we see \(2x + 1 \geq 7\) which implies \(|x + 4| + |x - 3| \geq 7\).

Therefore if \(x \in \mathbb{R}\), then \(|x + 4| + |x - 3| \geq 7\).

9. Let \(m \in \mathbb{Z}\). Prove that if \(5 \nmid m\), then \(m^2 \equiv 1 \pmod{5}\) or \(m^2 \equiv -1 \pmod{5}\).

Proof: Assume that \(5 \nmid m\). By the Division Algorithm, there are four cases for \(m\): \(m = 5k + 1\), \(m = 5k + 2\), \(m = 5k + 3\), or \(m = 5k + 4\) for some \(k \in \mathbb{Z}\).

Case 1: \(m = 5k + 1\) for some \(k \in \mathbb{Z}\). In this case, we have \(m^2 = 25k^2 + 10k + 1\). Thus, we see \(m^2 - 1 = 5(5k^2 + 2k)\). Since \((5k^2 + 2k) \in \mathbb{Z}\), we see \(5 \mid (m^2 - 1)\), that is \(m^2 \equiv 1 \pmod{5}\).

Case 2: \(m = 5k + 2\) for some \(k \in \mathbb{Z}\). In this case, we have \(m^2 = 25k^2 + 20k + 4\). Thus, we see \(m^2 + 1 = 5(5k^2 + 2k + 1)\). Since \((5k^2 + 2k + 1) \in \mathbb{Z}\), we see \(5 \mid (m^2 + 1)\), that is \(m^2 \equiv -1 \pmod{5}\).

Case 3: \(m = 5k + 3\) for some \(k \in \mathbb{Z}\). In this case, we have \(m^2 = 25k^2 + 30k + 9\). Thus, we see \(m^2 + 1 = 5(5k^2 + 2k + 2)\). Since \((5k^2 + 2k + 2) \in \mathbb{Z}\), we see \(5 \mid (m^2 + 1)\), that is \(m^2 \equiv -1 \pmod{5}\).

Case 4: \(m = 5k + 4\) for some \(k \in \mathbb{Z}\). In this case, we have \(m^2 = 25k^2 + 40k + 16\). Thus, we see \(m^2 - 1 = 5(5k^2 + 2k + 3)\). Since \((5k^2 + 2k + 3) \in \mathbb{Z}\), we see \(5 \mid (m^2 - 1)\), that is \(m^2 \equiv 1 \pmod{5}\).

Therefore, if \(5 \nmid m\), then \(m^2 \equiv 1 \pmod{5}\) or \(m^2 \equiv -1 \pmod{5}\).

10. **Bézout’s identity:** Let \(a, b \in \mathbb{Z}\) such that \(\gcd(a, b) = 1\). Then there exists \(x, y \in \mathbb{Z}\) such that \(ax + by = 1\).

For example, for \(a = 5\) and \(b = 7\) we can take \(x = 10\) and \(b = -7\).

Using Bézout’s identity, show that for \(a \in \mathbb{Z}\) and \(p\) prime, if \(a \not\equiv 0 \pmod{p}\) then \(ak \equiv 1 \pmod{p}\) for some \(k \in \mathbb{Z}\).

Proof: Let \(a \in \mathbb{Z}\) and \(p\) be prime. Assume that \(a \not\equiv 0 \pmod{p}\). Then we see that, since \(p\) is prime, \(\gcd(a, p)\) is either 1 or \(p\). Moreover, since \(a \not\equiv 0 \pmod{p}\), we see that \(p \nmid a\). Hence, \(\gcd(a, p) = 1\). Thus, using the Bézout’s identity, we know that there exist \(x, y \in \mathbb{Z}\) such that \(ax + py = 1\). This implies, \(ax - 1 = py\). Hence, since \(y \in \mathbb{Z}\), we see \(p \mid (ax - 1)\).

Therefore \(ax \equiv 1 \pmod{p}\) for \(x \in \mathbb{Z}\) as chosen above.