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1. Abstract

We look at some general conditions for determining

when the unit of an adjunction is monic when the gener-

ated monad is defined on a category of algebras. Among

other possible applications these conditions will be shown

to provide a common approach to some classic embedding

theorems in algebra.

2



2. Introduction

Let T = (T, η, µ) be a monad defined on a category

C. We consider the following problem. Is ηC monic for

a given object C of C?

There is an easy answer in the case of monads defined

on Set. This is given here but goes back at least to the

thesis of Manes.

In this talk we require that T be defined on a cat-

egory C of Eilenberg-Moore algebras given by finitary

operations and equations. It is further required that T

be generated by a pair of adjoint functors fitting into a

certain framework.

Necessary and sufficient conditions are given for ηC to

be monic for given object C when T fits into the frame-

work described. A key condition is given in terms of a

graph assigned to object C.

Additional flexibility is attained by relating the key

condition to several other graph conditions. This results

in another theorem, which we apply in several cases.
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3. Monads over Set.

Let T = (T, η, µ) be a monad defined on Set. The

category SetT of Eilenberg-Moore algebras is said to be

nontrivial if there is at least one algebra (A, α) whose

underlying set A has more than one element.

Lemma. If the category of Eilenberg-Moore algebras

for a monad (T, η, µ) on Set is nontrivial, then ηX is

monic for all sets X.

Proof. Let x and y be distinct elements of a set X

with more than one element and suppose that (A, α) is

an algebra with more than one element. Then there is a

function f : X → A with f(x) distinct from f(y). By

the universal mapping property there is a unique algebra

morphism g : (TX, µX)→ (A, α) such that the following

diagram commutes

X

f ''OOOOOOOOOOOOOO

ηX // TX
g
��

A

thus ηX(x) is not equal to ηX(y). �

Thus for example, in the case of semigroups, this shows

that any set may be embedded in the free semigroup.

It is clearly rare for the category of Eilenberg-Moore

algebras to be trivial since, if trivial, each TX is either
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empty or consists of one element since it is the underlying

object of the algebra (TX, µX). Furthermore, TX is the

codomain of ηX , hence cannot be empty unless X is.

Now, we remark that the unique function T 1→ 1 is a

T -algebra, where 1 is the one point set, and the empty set

has a T -structure if and only if T (∅) = ∅. Accordingly,

up to isomorphism, there are only two monads (T1, η1, µ1)

and (T2, η2, µ2) yielding just trivial algebras. These are

given by T1X = 1 for each set X and T2(∅) = ∅ otherwise

T2(X) = 1
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4. Reduction and Graph Components.

Let G be a small subcategory of a category C and let

P(G) be the power category of G. The objects of P(G)

are the subclasses of objects of G and the morphisms are

the inclusions.

The reduction functor RG : Cop → P(G) is defined

by

RGX = {A|A is inG andX → A exists inC}

with the obvious definition on morphisms.

An object A is reduced in C if the only C-morphism

with domain A is the identity. The subcategory G is

reduced in C if each of its objects is reduced in C. An

object X of C is G-reducible if RGX is nonempty.

The component class [X ] of an object X of a category

C (or a graph C) is the class of all objects Y which can

be connected to X by a finite sequence of morphisms

(e.g. X → X1←−X2 → Y ). We let CompC denote the

collection of component classes.

Strong Embedding Principle for G If [X ] = [Y ]

in CompC, then RGX = RGY . Furthermore there is

at most one morphism X → A for each pair (X, A)

consisting of an object X of C and an object A of G.
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5. A Framework for Embeddings.

Let Alg(Ω, E) denote the category of algebras defined

by a set of operators Ω and identities E. Suppose

A
U // B

V // D (1)

is a diagram such that

(a) A, B and D are the categories of (Ω, E), (Ω
′
, E

′
)

and (Ω
′′
, E

′′
) algebras, respectively, with Ω

′′
⊆ Ω

′

and E
′′
⊆ E

′
, and

(b) V is the forgetful functor on operators Ω
′
− Ω

′′
and

identities E
′
−E

′′
and U is a functor commuting with

the underlying set functors on A and B. Note that

U is not necessarily a functor forgetting part of Ω

and E.

We next describe a functor CV : B → Grph associ-

ated to each pair consisting of a diagram (1) of algebras

and an adjunction (L, V U, ϕ
′
) : D → A, where Grph

is the category of directed graphs.

Given an object G of B let the objects of the graph

CV (G) be the elements of the underlying set |LV G| of

LV G.

Recursive definition of the arrows of CV (G):

ωULV G(|η
′

V G|x1, · · · , |η
′

V G|xn)→ |η
′

V G|ωG(x1, · · · , xn)
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is an arrow if ω is in the set Ω
′
−Ω

′′
of operators forgotten

by V and (x1, · · · , xn) is an n-tuple of elements of |G|
for which ωG(x1, · · · , xn) is defined.

If d→ e is an arrow of CV (G), then so is

ρLV G(d1, · · · , d, · · · , dq)→ ρLV G(d1, · · · , e, · · · , dq)

for ρ an operator of arity q in Ω and d1, · · · , di−1, di+1, · · · , dq

arbitrary elements of |LV G|.

If β : G → G
′
∈ B, then CV (β) : CV (G) → CV (G

′
)

is the graph morphism which is just the function |LV β| :
|LV G| → |LV G

′
| on objects and defined recursively on

arrows in the obvious way.

In the following proposition note that if, in the dia-

gram (1),D is the category of sets, then an adjunction

(L, V U, ϕ
′
) is given by letting LX be the free (Ω, E)

algebra on the set X .

Proposition. Suppose

A
U // B

V // D

L

ff

is a diagram of algebras as in (1), with given adjunc-

tion (L, V U, ϕ
′
) : D → A. Then there is an adjunc-

tion (F, U, ϕ) : B → A with the following specific

properties:
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(a) The underlying set of FG is CompCV (G).

(b) If ρ is an operator of arity n in Ω, then ρFG is

defined by

ρFG([c1], · · · , [cn]) = [ρLV G(c1, · · · , cn)]

where c1, · · · , cn are members of the set |LV G| of
objects of the graph CV (G).

(c) The unit morphism ηG : G → UFG of (F, U, φ)

has an underlying set map which is the compo-

sition [−]. | η
′

V G|, where |η
′

V G| : |G| → |LV G| =

ObjCV (G) is the set map underlying the unit η
′

V G :

V G→ V ULV G of the adjunction (L, V U, φ
′
) and

[−] : ObjCV (G)→ CompCV (G) is the component

function.

Suppose the hypotheses of the proposition hold. Let

SV be a subgraph of CV (G) having the same objects

|LV G| and the same components as CV (G). Then the

proposition remains valid under substitution of SV for

CV (G) throughout. This allows us to “picture” the ad-

joint using a possibly smaller set of arrows than those

present in CV (G). Accordingly, we define a V picture

of the adjoint F to U at G ∈ |B| to be any quotient

category C(= C(SV )) of the free category generated by

such a subgraph SV of CV (G). This proposition is then

9



valid upon substitution of the underlying graph of a V

picture C for CV (G) throughout.

We now present the first embedding theorem.

Theorem. Let

A
U // BFhh

V // D

L

ff

be given with adjunctions (L, V U, ϕ
′
) : D → A and

(F, U, ϕ) : B→ A as described in the Proposition.

Given G ∈ |B| let C(SV ) be any V picture of the

adjoint F to U at G.

Then the unit morphism ηG : G→ UFG of the ad-

junction (F, U, ϕ) is monic if and only if the following

hold

(a) The discrete subcategory G = η
′

V G(|G|) is reduced

in C(SV ) for η
′

V G the unit of (L, V U, φ
′
).

(b) If [A] = [B] in CompC(SV ) with A, B ∈ |G|, then

RGA = RGB, where RG : C(SV )op → P(G) is

the reduction functor.

(c) The unit morphism η
′

V G is monic.
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6. Diamonds, Strong Embeddings and Con-

nectedness.

We make use of the following principles.

Diamond Principle for G. Let G be a subcategory

of C, then the objects α : X → A of X/C with A an

object of G are terminal in X/C for each object X of C.

Lemma A. Let G be a reduced subcategory of C.

Then the following statements are equivalent:

(a) The Diamond Principle for G.

(b) Each pair Y←X→Z of C-morphisms with X a

G-reducible object can be completed to a commu-

tative diamond in C.

Proof. Suppose that (b) holds and let α : X → A be an

object of X/C with A in G and β : X → Y be any other

object. Then, by hypothesis there exists a commutative

diagram

X
α
~~}}

}}
}}

} β

  A
AA

AA
AA

A

A

δ   A
AA

AA
AA

Y

γ~~}}
}}

}}
}

C
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in C. But A in G implies that δ = 1. Thus γ : β → α.

If γ ′ : β → α then, by hypothesis, A
γ
← Y

γ′
→ A can

be completed to a commutative square since Y is G-

reducible. Thus γ = γ ′ since A is reduced and so α

is terminal.

It is trivial to show that (a) implies (b). �

For the next Lemma we recall the definition of the

Strong Embedding Principle for G. If [X ] =

[Y ] in CompC, then RGX = RGY . Furthermore there

is at most one morphism X → A for each pair (X, A)

consisting of an object X of C and an object A of G.

Lemma B. The Strong Embedding Principle for G

implies the Diamond Principle for G.

Proof. Let A
α
← X

β
→ Y be a diagram in C with A

in G. Thus [A] = [Y ] in CompC and RGX = RGY ,

by hypothesis. Hence A is in RGY and there exists γ :

Y → A. But then γβ and α are morphisms X → A and

α = γβ by hypothesis. Thus γ : β → α in X/C and γ

is unique since as a C morphism it is the only morphism

Y → A by hypothesis. �

The implication also goes in the other direction. For a

proof see [6].

Given an object X of C let (X/C)P be the full sub-
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category of the slice category X/C obtained by omitting

the object 1X : X → X .

Principle of Connectedness for T. The cate-

gories (X/C)P are connected for each object X of T,

where T is a subcategory of C.

Lemma C. If α : X → A is a terminal object of

X/C with A reduced, then (X/C)P is connected.

Proof. If X is reduced, then X/C contains only one

object, namely 1X , and (X/C)P is empty, hence trivially

connected. If X is not reduced and α : X → A is

terminal in X/C with A reduced, then α 6= 1X and α is

terminal in (X/C)P . Thus (X/C)P is connected. �

Lemma D. If the Diamond Principle holds for a re-

duced subcategory G of C, then the Principle of Con-

nectedness holds for the full subcategory TG of C con-

sisting of all G-reducible objects of C.

Proof. Let X be in TG. Then there is a morphism

X → A in C with A in G. By the Diamond Principle

for G the morphism X → A is terminal in X/C. By

Lemma C then (X/C)P is connected. �

Definition. Let N be the preorder of nonnegative in-

tegers with n → m iff n ≥ m. A rank functor for

a category C is a functor R : C → N with Rα 6= 1

whenever α 6= 1.
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Theorem. Let C be a category with rank functor

given and G a subcategory which is reduced in C.

Then the following are equivalent.

(a) The Principle of Connectedness for the full sub-

category TG of C determined by all G reducible

objects of C.

(b) The Diamond Principle for G.

(c) The Strong Embedding Principle for G.
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7. The Second Embedding Theorem.

In the presence of a rank functor we have seen in The-

orem 6 that the three principles are equivalent. We apply

this Theorem to the hypotheses of Theorem 5 to obtain

the following result:

Theorem. Let

A
U // BFhh

V // D

L

ff

be given with hypotheses as in Theorem 6.

Then the unit morphism ηG : G→ UFG of (F, U, ϕ)

is monic provided there exists a V picture C of the ad-

joint F to U at G for which the following conditions

hold:

(a) C has a rank functor.

(b) The discrete subcategory G = η
′

V G(|G|) is reduced

in C for η
′

V G the unit of (L, V U, ϕ
′
).

(c) The categories (X/C)P are connected for each X ∈
|C| which is G reducible.

(d) The unit morphism η
′

V G of (L, V U, ϕ
′
) is monic.
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8. Associative Embedding of Lie Algebras.

Let U : A → L be the usual algebraic functor from

associative algebras over K to Lie algebras over K, for

K a commutative ring. That is, for A ∈ |A|, UA is

the same as A except that a new multiplication [ab] =

a.b − b.a replaces the associative multiplication a.b of

A ∈ |A|.

It is well known that an adjunction (F, U, ϕ) : L →
A exists. The question of embeddability of a Lie alge-

bra in its universal associative algebra (i.e. the question

as to whether the unit morphisms ηG of (F, U, ϕ) are

monomorphisms) has been investigated by various au-

thors (cf. Birkhoff[3] and Serre[11]). Not all Lie algebras

can be so embedded (cf. Higgins[4]).

We demonstrate how such a question can be put in the

context of the previous sections. Let V : L → ModK

be the functor forgetting the Lie multiplication. We then

have the diagram

A
U // L

V // ModK

L

gg

where the conditions (a) and (b) of diagram (1) hold. The

existence of the adjunction (L, V U, ϕ
′
) : ModK → A is
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assured on theoretical grounds, but can also be described

explicitly as follows.

Given G ∈ |L| it is known that LV G is the tensor

algebra of V G. Thus

LV G = ⊕n≥0(⊗
n
i=1(V G)).

Furthermore η
′

V G : V G→K⊕V G⊕(V G⊗V G)⊕ · · · is

monic. In this section let G be the discrete subgraph

η
′

V G(|G|) of CV (G). Thus G is a discrete subcategory

of any V picture of F at G. Applying Theorem 5 the

following Lie algebra embedding result holds.

Theorem A. Let G be a Lie algebra and C any V

picture of F at G. Then a Lie algebra G can be em-

bedded in its universal associative algebra FG if and

only if the following hold:

(a) [A] = [B] in CompC implies that RGA = RGB

for all A, B ∈ |G| where RG : Cop → P(G) is the

reduction functor.

(b) G is a reduced subcategory of C.

Similarly, by applying Theorem 7 and noting that η
′

V G

is monic we have the following sufficient conditions:

Theorem B. A Lie algebra G can be embedded in its

universal associative algebra FG if there exists any
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V picture C of the adjoint F to U at G with the

following properties.

(a) The categories (X/C)P are connected for each X ∈
|C| which is G reducible.

(b) C has a rank functor.

(c) The discrete subcategory G = η
′

V G(|G|) is reduced

in C for η
′

V G the unit of (L, V U, φ
′
).

Theorem (Birkhoff-Witt). A Lie algebra G whose un-

derlying module V G is free can be embedded in its

universal associative algebra FG.

Proof. The conditions of the previous theorem are to

be verified for the following V picture of the adjoint F

to U at G. Let C be the preorder which is a quotient of

the free category on the following subgraph SV of CV (G).

The objects of SV are the elements of the free K module

LV G on all finite strings xi1 · · ·xin of elements from a

basis (xi)i∈I of the free K module V G. Given a well

ordering of I we let the arrows of SV be those of the form

kixi1 · · ·xin + α→

kixi1 · · ·xij+1
xij · · ·xin +kixi1 · · · [xij , xij+1

] · · ·xin +α

for ij+1 < ij, ki∈K, and α any element of LV G (not

involving xi1 · · ·xin).
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To show that the categories (X/C)P are connected for

each X∈|C| which is G reducible, it turns out that the

key idea is to show that for c < b < a in I the objects

β : xaxbxc→xbxaxc + [xa, xb]xc

and

γ : xaxbxc→xaxcxb + xa[xb, xc]

can be connected in ((xaxbxc)/C)P . This is done by

further reduction of the ranges of β and γ and use of the

Jacobi identity and the identity [x, y] = −[y, x].

The rank functor for C is given as follows. Given

X = kxa1 · · ·xan let R(X) = (Rn(X)) be a sequence

of nonnegative integers defined by Rn(X) =
∑n

i=1 pai

where pai
is the number of xaj

to the right of xai
with

aj < ai and Rs(X) = 0 for s 6= n. We extend by lin-

earity to all elements of LV G = |C|. If X → Y is an

arrow, then R(Y ) < R(X) where the latter inequality

means that Rn(Y ) < Rn(X) for n the largest integer

with Rn(Y ) 6= Rn(X). Thus R extends to a rank func-

tor.

Finally, we verify condition (c) by observing that any

element of |G| may be expressed in the form
∑

i∈I kixi

in terms of the basis (xi)i∈I of G, which is regarded as

a subset G of LVG via the embedding η
′

V G. From the

preceding description of arrows of SV there is no arrow
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with domain an element of G = η
′

V G(|G|). Thus G is

reduced in C. �
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9. Sets with a partially defined binary opera-

tion and a result of Schreier.

We show how the following classical theorem follows

from sections 5 and 7.

Theorem (Schreier). If S is a common subgroup of

the groups X and Y and if

S
⊆

��

⊆ // X
α

��

Y β
// P

(2)

is the pushout in the category of groups, then α and

β are monomorphisms. The group P is referred to

as the free product of X and Y with amalgamated

subgroup S.

Let B be the category of sets with a single partially

defined binary operation. The diagram X ←− S → Y

of groups can be regarded as a diagram in B and can be

completed to a diagram

S
⊆

��

⊆ // X
γ
��

Y δ
// G

(3)

commuting in B where G is the disjoint union of X and Y

with common subset S identified and a.b defined if both
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a, b ∈ X or if both a, b ∈ Y , otherwise a.b is undefined.

The morphisms γ and δ are the obvious monomorphisms.

The next Lemma and Proposition describe how this ap-

proach yields the Schreier Theorem.

Lemma. The Schreier Theorem holds if in 3 the

pushout codomain G in B is embeddable in a group.

Proof. Let ι : G → P
′
be a monomorphism in B with

P
′
a group. Then

S
⊆

��

⊆ // X
ιγ

��

Y ιδ
// P
′

commutes in groups. Thus for some group homomor-

phism φ we have ιγ = φα and ιδ = φβ since (2) is a

pushout in groups. Thus α, β are monic since ι, γ and δ

are. �

Proposition. Let G be as in the lemma. Then G is

embeddable in a group.

Proof. We embed G in a particular semigroup which

turns out to be a group. Begin with the diagram

A
U // B

V // Sets

L

gg
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where A is the category of semigroups(not necessarily

with 1), U forgetful, V forgetful and (L, V U, ϕ
′
) an ad-

junction. We then have a preorder CG which is a quotient

of the free category FG generated by CV (G). Proposition

5 (which also holds for the category B of partial algebras,

see[6]) shows that an adjunction < F, U, ϕ >: B→A ex-

ists and describes it. It is sufficient to show that the unit

ηG : G→UFG of the adjunction is a monomorphism. By

Theorem 7 it is sufficient to verify conditions (a) through

(d). These conditions are trivial except for (c), which re-

quires that the categories (X/C)P be connected for each

G-reducible object X of C. The objects of CG are el-

ements of the free semigroup LV G on V G. An object

X may be written as a string (a1, · · · , an) of length n≥1

where ai∈V G for i = 1, · · · , n. It is sufficient to show

that CV arrows

(a1, · · · , an)
α

tthhhhhhhhhhhhhhhhhh β

**VVVVVVVVVVVVVVVVVV

(· · · , aiai+1, · · · ) (· · · , ajaj+1, · · · )

regarded as (X/CG)P objects can be connected by a fi-

nite sequence of morphisms in the same category. This

requires a detailed argument when i = j−1 or i = j +1,

otherwise it is trivial (cf. Baer[1], MacDonald[7]). �

23



10. Classical coherence. In considering categories

with operations and natural equivalences (replacing the

equations of algebras) we immediately discover a rela-

tionship between connectedness and the commutativity

of diagrams arising from the isomorphisms. This is illus-

trated by the following example.

Let V be a category and ⊗ : V × V→V a functor

associative up to a natural isomorphism

a : A⊗(B⊗C)→(A⊗B)⊗C

Since we have isomorphisms and not (in general) equal-

ities it is then natural to ask whether all diagrams built

up from the natural isomorphism a commute. This is

an example of a coherence question. It turns out that

the answer is affirmative in this case if a certain type of

pentagon diagram commutes in a subcategory C of the

category of shapes N () that we are going to define next.

Shapes are defined inductively by

S1. 1 is a shape

S2. If T and S are shapes, so is T�S

For each shape there is a variable set ν(T ) defined induc-

tively by

V1. ν(1) is a chosen one element set.
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V2. ν(T�S) is the disjoint union of ν(T ) and ν(S).

Given , then for each shape T there is a functor |T |
given inductively by

F1. |1|: → is the identity functor.

F2. |T�S| = ⊗ · (|T | × |S|) : WT × WS→ × → for

WT and WS products of ν(T ) and ν(S) copies of ,

respectively.

Let N () be the category whose objects are all shapes

and whose morphisms F : T→S are the natural trans-

formations F : |T |→|S|.
Given T, S and R we obtain αTSR : T�(S�R)→(T�S)�R)

in N () by letting αTSR(X, Y, Z) be the component

|T |X⊗(|S|Y⊗|R|Z)→(|T |X⊗|S|Y )⊗|R|Z)

of the natural transformation a on for X, Y, Z objects of

the domain categories for |T |, |S| and |R|, respectively.

Let C (=C()) be the subcategory ofN () whose objects

are all shapes and whose morphisms, called the allowable

morphisms of N (), are given by

AM1. 1 : T→T and α : T�(S�R)→(T�S)�R) are in C

for any shapes T, S, R.

AM2. If f : T→T
′

and g : S→S
′

are in C, then so is

f�g : T�S→T
′
�S

′
.
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AM3. If f : T→S and g : S→R are in C, then so is

gf : T→R.

Lemma. Let D be a category with a rank functor and

assume that (X/D)P is connected for each object X of

D. Then D is a preorder if and only if the morphisms

of D are all monomorphisms.

Proof. Let G be the subcategory of all reduced objects.

Then, since D has a rank functor, every object of D is

G-reducible. Thus, if f, g : X→Y in D, then there

is h : Y→G with G in G. By Theorem 3.2 the Dia-

mond Principle for G holds. Thus objects of X/D with

codomain in G are terminal. Thus h · f = h · g since G

is reduced and f = g since h is monic. �

A rank functor ρ for the subcategory C of N () de-

scribed above is defined recursively by ρ(1) = 0 and

ρ(T�S) = ρ(T ) + ρ(S) + |ν(S)| − 1, where |ν(S)| =

card ν(S).

Theorem. The category (X/C)P is connected for ev-

ery shape X∈|C| provided that the pentagon diagram

A⊗(B⊗(C⊗D)) a //

1⊗a
��

(A⊗B)⊗(C⊗D) a // ((A⊗B)⊗C)⊗D

A⊗((B⊗C)⊗D) a // (A⊗(B⊗C))⊗D

a⊗1

OO
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commutes for all A, B, C, D in .

Corollary. The category C is a preorder provided all

pentagon diagrams commute.

A functor T : C→D whose domain is a preorder is

called a coherence functor for D. Intuitively, T describes

a class of commutative diagrams in D.

The subcategory of N () generated by C and the in-

verses to the associativity isomorphisms is also a preorder.

For further details see ([6]) or ([8]).
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