Random Cayley Graphs

Jonathan Hermon, Sam Thomas

University of British Columbia

Stanford University, 11th May 2020
Let G be a finite group.

In this talk - usually G is abelian or nilpotent.

We will actually be considering a sequence $G^{(n)}$ of finite groups with $|G^{(n)}| \to \infty$, and their Cayley graphs w.r.t. random sets of generators.
Random Cayley Graphs

The **Cayley digraph** of a group G with respect to $Z := [Z_1, \ldots, Z_k] \subseteq G$ is the graph with vertex set G and edge set

$$\{(g, gz) \mid g \in G, z \in Z\}.$$

The (undirected) **Cayley graph** is given by replacing Z with $Z \cup Z^{-1}$, where $Z^{-1} := [Z_1^{-1}, \ldots, Z_k^{-1}]$.

1 We sample with replacements. Since $k \ll \sqrt{n}$ we can also sample without. \ll means little o and \lesssim means big O.
The **Cayley digraph** of a group G with respect to $Z := [Z_1, \ldots, Z_k] \subseteq G$ is the graph with vertex set G and edge set

$$\{(g, gz) \mid g \in G, z \in Z\}.$$

The (undirected) **Cayley graph** is given by replacing Z with $Z \cup Z^{-1}$, where $Z^{-1} := [Z_1^{-1}, \ldots, Z_k^{-1}]$.

Throughout, we choose k random elements Z_1, \ldots, Z_k uniformly at random from G, where $k = k_n$ is a function of $n := |G|$, satisfying $1 \ll \log k \ll \log n$.\(^1\)

We call Z_1, \ldots, Z_k **generators**, even though they may fail to generate G.

Denote the obtained random Cayley graph by G_k and digraph by $\overrightarrow{G_k}$.

\(^1\)We sample with replacements. Since $k \ll \sqrt{n}$ we can also sample without. \ll means little o and \lesssim means big O.
Random Cayley Graphs

The **Cayley digraph** of a group G with respect to $Z := [Z_1, ..., Z_k] \subseteq G$ is the graph with vertex set G and edge set

$$\{(g, gz) \mid g \in G, z \in Z\}.$$

The (undirected) **Cayley graph** is given by replacing Z with $Z \cup Z^{-1}$, where $Z^{-1} := [Z_1^{-1}, ..., Z_k^{-1}]$.

Throughout, we choose k random elements $Z_1, ..., Z_k$ uniformly at random from G, where $k = k_n$ is a function of $n := |G|$, satisfying $1 \ll \log k \ll \log n$.\(^1\)

We call $Z_1, ..., Z_k$ **generators**, even though they may fail to generate G.

Denote the obtained random Cayley graph by G_k and digraph by $\overrightarrow{G_k}$.

All our results hold for both G_k and $\overrightarrow{G_k}$, sometimes with different constants.

Throughout G is not random! Only Z is random.

\(^1\) We sample with replacements. Since $k \ll \sqrt{n}$ we can also sample without.

\ll means little o and \lesssim means big O.
Random Cayley Graphs

Why study random Cayley graphs?

- In the spirit of the legacy of Erdős, this is one instance of the general question:
 "how does a random element of (\cdot) looks/behaves like?"

- Establishing certain universal properties about the random walk (e.g. cutoff) and the geometry that almost all choices of generators satisfy:
The Aldous–Diaconis Conjecture

In 86 Aldous and Diaconis coined the term cutoff and conjectured that: simple random walk on G_k exhibits cutoff (i.e., converges abruptly to equilibrium) for large k, around a time $t = t(|G|, k)$ independent of the algebraic structure of G.
The Aldous–Diaconis Conjecture

In 1986 Aldous and Diaconis coined the term cutoff and conjectured that: simple random walk on G_k exhibits cutoff (i.e., converges abruptly to equilibrium) for large k, around a time $t = t(|G|, k)$ independent of the algebraic structure of G.

- Confirmed by Dou (1992) for k s.t. $\log k \gg \log \log |G|$: cutoff at time $\log_k |G|$.
- Dou & Hildebrand (1994) - cutoff for abelian G when $k = \lceil (\log n)^a \rceil$ for $a > 1$ at time $\log_k / \log n$ (where $n := |G|$).
Alon & Roichman (94) - \(\forall \varepsilon \in (0, 1), \exists C = C(\varepsilon) > 1 \) s.t. for all finite \(G \): \(G_k \) is a \(1 - \varepsilon \) expander w.h.p. when \(k > C \log_2 |G| \) - meaning

\[
\Phi := \min_{A \subset G: |A| \leq |G|/2} \frac{|E(A, A^c)|}{2k|A|} \geq 1 - \varepsilon
\]

where \(E(A, A^c) \) is the set of edges between \(A \) and its complement in \(G_k \).
Geometric results - spectral gap

- **Alon & Roichman (94)** - \(\forall \varepsilon \in (0, 1), \exists C = C(\varepsilon) > 1 \) s.t. for all finite \(G \): \(G_k \) is a \(1 - \varepsilon \) expander w.h.p. when \(k > C \log_2 |G| \) - meaning

\[
\Phi := \min_{A \subset G: |A| \leq |G|/2} \frac{|E(A, A^c)|}{2k|A|} \geq 1 - \varepsilon
\]

where \(E(A, A^c) \) is the set of edges between \(A \) and its complement in \(G_k \).

- By Cheeger’s ineq. \(\Phi \) is bounded away form 0 iff the spectral-gap is bounded away form 0

 (where spectral-gap = 2nd smallest eigenvalue of \(I - P \), where \(P \) is the transition matrix of the walk)
Geometric results - spectral gap

- Alon & Roichman (94) - \(\exists C > 1 \) s.t. for all finite \(G \): \(G_k \) is an expander w.h.p. when \(k > C \log_2 |G| \).

- H. & Thomas (19) - If \(G \) is abelian, the spectral-gap of (SRW on) \(G_k \) is at most \(C|G|^{-2/k} \) w.p. 1, and

 if \(k \geq (2 + \delta)d(G) \) it is at least \(c|G|^{-2/k} \) w.p. \(1 - e^{-c(\delta)k} \), where

 \[
 d(G) := \min \text{ size of a set which generates } G.
 \]

 \((k \geq (1 + \delta)d(G) \) suffices if \(|G| \) belongs to a density 1 set of \(\mathbb{N} \).)
Spectral gap - Open Problems

- Alon & Roichman (94) - $\exists C > 1$ s.t. for all finite G: G_k is an expander w.h.p. when $k > C \log_2 |G|$.

- Open Problem: Does G_k become an expander w.h.p. for smaller values of k if G is not abelian?

Here $G_{ab} = G/\langle [G,G] \rangle$ is the abelianization of G, and $\langle [G,G] \rangle$ is its commutator (the group generated by $\{ghg^{-1}h^{-1} : g, h \in G\}$).

- Open Problem: For $G = S_n$ do we get an expander for $k = O(1)$?

(Helfgott, Seress and Zuk (15): for $k = 2$ w.h.p. G_k is connected and the mixing time is at most $n^3 \log n$.)
Spectral gap - Open Problems

- Alon & Roichman (94) - $\exists C > 1$ s.t. for all finite G: G_k is an expander w.h.p. when $k > C \log_2 |G|$.

- Open Problem: Does G_k become an expander w.h.p. for smaller values of k if G is not abelian?

 E.g., is it enough that $k \geq C \log |G^{ab}|$?

Here $G^{ab} := G/[G, G]$ is the abelianization of G, and $[G, G]$ is its commutator (the group generated by $\{ghg^{-1}h^{-1} : g, h \in G\}$).

- Open Problem: For $G = S_n$ do we get an expander for $k = O(1)$?

 (Helfgott, Seress and Zuk (15): for $k = 2$ w.h.p. G_k is connected and the mixing time is at most $n^3 \log n$.)
Shapira and Zuck (18) (improving Marklof and Strömbergsson) - For a sequence of abelian $G^{(n)}$ with fixed $d(G^{(n)}) = d$ and fixed $k \geq d$:

\[(\ast) \quad |G^{(n)}|^{-1/k} \text{Diameter}(G_k^{(n)})\]

converges in distribution as $n \to \infty$ to a non-degenerate distribution (with a semi-explicit description), under some mild conditions.

El-Baz and Pagano (20) - For $H_{d,p}$, the d-dim Heisenberg group of $d \times d$ uni-upper triangular matrices with integer entries mod p, for fixed $k \geq d - 1$: same limit as in (\ast) as $p \to \infty$, with $|G|$ replaced with $|G^{ab}|$.
Geometric results - diameter

- H. & Thomas (19) - G abelian - If $k \geq (1 + \varepsilon)d(G)$ and $k \gg 1$ then w.h.p. the "typical distance" from the identity in G_k is concentrated:

 All but $o(|G|)$ vertices of G_k lie at distance between $R - o(R)$ and $R + o(R)$ from the identity, where $R = R(G) \asymp k|G|^{1/k}$.

- Under mild assumptions R is the minimal radius of a ball in \mathbb{Z}^k of size $\geq |G|$.

- If $k \gtrsim \log |G|$ then $\text{Diameter}(G_k) = R + o(R)$.
Geometric results - diameter

- H. & Thomas (19) - G abelian - If $k \geq (1 + \varepsilon)d(G)$ and $k \gg 1$ then w.h.p. the "typical distance" from the identity in G_k is concentrated:

 All but $o(|G|)$ vertices of G_k lie at distance between $R - o(R)$ and $R + o(R)$ from the identity, where $R = R(G) \asymp k|G|^{1/k}$.

- Under mild assumptions R is the minimal radius of a ball in \mathbb{Z}^k of size $\geq |G|$.

- If $k \gtrsim \log |G|$ then $\text{Diameter}(G_k) = R + o(R)$.

- H. & Thomas (19) - similar results hold for the Heisenberg group with $|G|$ above replaced with $|G^{ab}|$.
The total variation (TV) distance of two distributions μ and ν on the same finite set G is

$$\|\mu - \nu\|_{TV} := \frac{1}{2} \sum_{x \in G} |\mu(x) - \nu(x)|.$$

The TV ε-mixing time of a Markov chain $(X_t)_{t \geq 0}$ is

$$t_{\text{mix}}(\varepsilon) := \inf \left\{ t : \max_x \|P^t_x[X_t = \cdot] - \pi\|_{TV} \leq \varepsilon \right\},$$

where π is the stationary distribution.
The total variation (TV) distance is \(\|\mu - \nu\|_{TV} := \frac{1}{2} \sum_x |\mu(x) - \nu(x)| \).

The TV \(\epsilon \)-mixing time is \(t_{mix}(\epsilon) := \inf \{ t : \max_x \|\mathbb{P}_x[X_t = \cdot] - \pi\|_{TV} \leq \epsilon \} \), where \(\pi \) is the stationary distribution.

A sequence of Markov chains exhibits (TV) **cutoff** if the \(\epsilon \)-mixing time is asymptotically indep. of \(\epsilon \):

\[
\lim_{n \to \infty} t_{mix}^{(n)}(\epsilon)/t_{mix}^{(n)}(1 - \epsilon) = 1, \quad \forall 0 < \epsilon < 1
\]

(1)

(the superscript \((n) \) indicates that this is the mixing time of the \(n \)th chain).

For a random sequence, we say ‘cutoff occurs w.h.p.’ if (1) holds in distribution.
Cutoff - definition

- A sequence of MCs exhibits (TV) **cutoff** if the ε-mixing time is asymptotically indep. of ε:

$$\lim_{n \to \infty} \frac{t_{\text{mix}}^{(n)}(\varepsilon)}{t_{\text{mix}}^{(n)}(1 - \varepsilon)} = 1, \quad \forall 0 < \varepsilon < 1.$$

(2)

For a random sequence, say ‘cutoff occurs w.h.p.’ if (1) holds in distribution.

Figure: The worst case TV distance of the nth chain, $d_n(t) := \max_x \| \mathbb{P}_x [X_t = \cdot] - \pi \|_{TV}$ as a function of t when cutoff occurs.
Universality of cutoff

- Many families of Markov chains are believed to exhibit cutoff, but only few examples are fully understood.

- A recurring theme is that random instances exhibit cutoff.

- Often the cutoff time is an ‘entropic time’, meaning a time at which an auxiliary walk, often on the Benjamini-Schramm limit, has the same entropy as the stationary distribution.
Universality of cutoff - random walk on random graphs

Random walk on the following random instances exhibits cutoff at an entropic time:

- Lubetzky and Sly (11) - Random d regular graphs.
- Berestycki, Lubetzky, Peres, Sly (16) - The giant component of an Erdős-Renyi graph and the configuration model with min. degree ≥ 3.
- Bordenave, Caputo and Salez (18) - random digraphs with given degree seq.
- Bordenave and Lacoin (19) - random n-lift of a graph.2
- H., Sly, Sousi (20+) - ‘quasi-random graphs’ - obtained by adding to an arbitrary bounded degree graph (with connected components of size ≥ 3) the edges of a random perfect matching of the vertices.

2A random n lift of (V, E) is generated by taking n copies v_1, \ldots, v_n of each $v \in V$ and for each $uv \in E$ connect u_i with $v_{\tau_{uv}(i)}$, where τ_{uv} is a random permutation of $[n]$.
Cutoff - results

We prove cutoff at an entropic time for:

- Abelian G when $k - d(G) \gg 1$.\(^3\)

The entropic time is usually the time that the random walk on \mathbb{Z}^k is $\log |G|$.

\(^3\)Other than when $\sqrt{\log |G| / \log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where we need $k - d(G) \gg \log \log k$.

\(^4\)Throughout $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$.
Cutoff - results

We prove cutoff at an entropic time for:

- Abelian G when $k - d(G) \gg 1$.\(^3\)

The entropic time is usually the time that the random walk on \mathbb{Z}^k is log $|G|$.

This time is only a function of k and $|G|$ in accordance to the Aldous-Diaconis conjecture!

When k is of order close to log $|G|$ the entropic time will be defined w.r.t. random walk on\(^4\) \mathbb{Z}_m^k for various values of m.

\(^3\)Other than when $\sqrt{\log |G|/\log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where we need $k - d(G) \gg \log \log k$.

\(^4\)Throughout $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$.
Cutoff - results

We prove cutoff at an entropic time for:

- Abelian G when $k - d(G) \gg 1.$\(^3\)

The entropic time is usually the time that the random walk on \mathbb{Z}^k is $\log |G|$. This time is only a function of k and $|G|$ in accordance to the Aldous-Diaconis conjecture!

When k is of order close to $\log |G|$ the entropic time will be defined w.r.t. random walk on\(^4\) \mathbb{Z}^k_m for various values of m.

- The Heisenberg group $H_{p,d}$ of $d \times d$ uni-upper triangular matrices with entries mod a prime p, as $p \to \infty$ (if d is constant or diverges slowly).

Here the entropic time is the time that the random walk on \mathbb{Z}^k is $\log |G^{ab}|$.

\(^3\)Other than when $\sqrt{\log |G| / \log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where we need $k - d(G) \gg \log \log k$.

\(^4\)Throughout $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$.
Cutoff - results

We prove cutoff at an entropic time for:

- Abelian G when $k - d(G) \gg 1$.\(^3\)

 The entropic time is usually the time that the random walk on \mathbb{Z}^k is $\log |G|$. This time is only a function of k and $|G|$ in accordance to the Aldous-Diaconis conjecture!

 When k is of order close to $\log |G|$ the entropic time will be defined w.r.t. random walk on\(^4\) \mathbb{Z}_m^k for various values of m.

- The Heisenberg group $H_{p,d}$ of $d \times d$ uni-upper triangular matrices with entries mod a prime p, as $p \to \infty$ (if d is constant or diverges slowly).

 Here the entropic time is the time that the random walk on \mathbb{Z}^k is $\log |G^{ab}|$. This time does depend on d, not only on k and $|H_{p,d}|$.

\(^3\)Other than when $\sqrt{\log |G|/ \log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where we need $k - d(G) \gg \log \log k$.

\(^4\)Throughout $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$.
Generating the walk via an auxiliary random walk

- One way of generating the walk $S(t)$ on G_k is to take a random word $W(t)$ in the free group F_k, or in the abelian setup the free abelian group \mathbb{Z}^k, and then substitute the generators of the free group in W by Z.

- Think of W as the sequence of the indices of the generators picked at each step and their sign (indicating if we picked Z_i or Z_i^{-1}).

- In the abelian setup, $W_i(t)$ is counting how many times Z_i was picked by time t minus how many times $-Z_i$ was picked.

 Here $W(t)$ is a simple random walk on \mathbb{Z}^k.
A neat expression for the L_2 distance in our setup

For a probability measure μ on G the L_2 distance from the uniform distribution π is defined as

$$\| \mu - \pi \|_{2,\pi}^2 := |G| \sum_{g \in G} \left(\mu(g) - \frac{1}{|G|} \right)^2$$

$$\geq \text{(by Cauchy-Schwarz)} \left(\sum_{g \in G} \left| \mu(g) - \frac{1}{|G|} \right| \right)^2 = 4 \| \mu - \pi \|_{TV}^2.$$

Observe that $\| \mu - \pi \|_{2,\pi}^2 + 1 := |G| \sum_{g \in G} \mu(g)^2$
A neat expression for the L_2 distance in our setup

- Recall $\|\mu - \pi\|_{2,\pi}^2 + 1 = |G| \sum_{g \in G} \mu(g)^2$.

- If $S(t)$ is our random walk on G_k at time t, and $S'(t)$ is an independent copy (given $Z := [Z_1, \ldots, Z_k]$; i.e., given the graph) then

$$\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{2,\pi}^2 + 1 = |G| \sum_{g \in G} \mathbb{P}[S(t) = g | Z]^2$$

$$|G| \sum_{g \in G} \mathbb{P}[S(t) = g = S'(t) | Z] = |G| \mathbb{P}[S(t) = S'(t) | Z].$$

- We generate S and S' by picking independent walks W, W' on the free group, and then substituting the generators of the free group by Z.
A neat expression for the L_2 distance in our setup

- Recall $\|\mu - \pi\|_{2,\pi}^2 + 1 = |G| \sum_{g \in G} \mu(g)^2$.

- If $S(t)$ is our random walk on G_k at time t, and $S'(t)$ is an independent copy (given $Z := [Z_1, \ldots, Z_k]$; i.e., given the graph) then

$$\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{2,\pi}^2 + 1 = |G| \sum_{g \in G} \mathbb{P}[S(t) = g | Z]^2$$

$$|G| \sum_{g \in G} \mathbb{P}[S(t) = g = S'(t) | Z] = |G| \mathbb{P}[S(t) = S'(t) | Z].$$

- We generate S and S' by picking independent walks W, W' on the free group, and then substituting the generators of the free group by Z.

- Now take expectation.
Transforming a quenched problem to an annealed expectation:

- If $S(t)$ is our walk on G_k at time t, and $S'(t)$ is an independent copy given $Z := [Z_1, \ldots, Z_k]$, then

$$
\mathbb{E}[\|P[S(t) = \cdot | Z] - \pi\|^2_{2, \pi}] = |G|P[S(t) = S'(t)] - 1.
$$

Crucially, the r.h.s. is an **annealed** probability (averaging over Z)!
Transforming a quenched problem to an annealed expectation:

- If $S(t)$ is our walk on G_k at time t, and $S'(t)$ is an independent copy given $Z := [Z_1, \ldots, Z_k]$, then

\[
\mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_2^2] = |G|\mathbb{P}[S(t) = S'(t)] - 1.
\]

Crucially, the r.h.s. is an **annealed** probability (averaging over Z)!

- Hence if r.h.s. is $o(1)$, by Markov’s ineq. we can derive (the quenched statement) that w.h.p. Z is such that at time t this distance is $o(1)$.

Jonathan Hermon (UBC)
Random Cayley Graphs
Stanford University, 2020
21 / 41
Transforming a quenched problem to an annealed expectation:

- If \(S(t) \) is our walk on \(G_k \) at time \(t \), and \(S'(t) \) is an independent copy given \(Z := [Z_1, \ldots, Z_k] \), then

\[
\mathbb{E}[\|P[S(t) = \cdot | Z] - \pi\|^2_{2, \pi}] = |G|P[S(t) = S'(t)] - 1.
\]

Crucially, the r.h.s. is an \textbf{annealed} probability (averaging over \(Z \))!

- Hence if r.h.s. is \(o(1) \), by Markov’s ineq. we can derive (the quenched statement) that w.h.p. \(Z \) is such that at time \(t \) this distance is \(o(1) \).

- This is often enough for determining the order of the mixing time, but too coarse for proving cutoff.
From a quenched problem to an annealed one:

- If $S(t)$ is our walk on G_k at time t, and $S'(t)$ is an independent copy given $Z := [Z_1, \ldots, Z_k]$, then

$$\mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{2,\pi}^2] = |G|\mathbb{P}[S(t) = S'(t)] - 1.$$

- Hence if r.h.s. is $o(1)$, by Markov’s ineq. we can derive (the quenched statement) that w.h.p. Z is such that at time t this distance is $o(1)$.

- To prove cutoff we do a modified L_2 calculation, by conditioning the words W, W' in the free group, used to generate S and S', to both satisfy some condition that holds w.h.p.
From a quenched problem to an annealed one:

- If $S(t)$ is our walk on G_k at time t, and $S'(t)$ is an independent copy given $Z := [Z_1, \ldots, Z_k]$, then
 \[\mathbb{E}[\|P[S(t) = \cdot | Z] - \pi\|^2_{2,\pi}] = |G|P[S(t) = S'(t)] - 1. \]

- Hence if r.h.s. is $o(1)$, by Markov’s ineq. we can derive (the quenched statement) that w.h.p. Z is such that at time t this distance is $o(1)$.

- To prove cutoff we do a modified L_2 calculation, by conditioning the words W, W' in the free group, used to generate S and S', to both satisfy some condition that holds w.h.p.

 E.g., if some generator is picked only once in W and 0 times in W' or vice versa, then $S^{-1}S' \sim \text{Unif}(G) \implies P[S(t) = S'(t) | \text{this event}] = 1/|G|.$

 (On this event can write $S^{-1}S' = AZ_i^{\pm 1}B$ for A, B indep. of Z_i.)
A modified L_2 bound

We use the modified L_2 bound:

$$\frac{1}{2} \mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{TV}]^2$$

$$\leq |G| \mathbb{P}[S(t) = S'(t) | W(t), W'(t) \in \text{typ}] - 1 + \mathbb{P}[W(t) \notin \text{typ}],$$

where typ is a certain ‘typical’ event (i.e. $\mathbb{P}[W(t) \notin \text{typ}] = o(1)$)

(i.e., in terms of the sequence of indices picked by time t (with multiplicities): $i_1, \ldots, i_{r(t)}$, and their signs).
A modified L_2 bound

We use the modified L_2 bound:

$$\frac{1}{2} \mathbb{E}[\| \mathbb{P}[S(t) = \cdot \mid Z] - \pi \|_{TV}]^2$$

$$\leq |G| \mathbb{P}[S(t) = S'(t) \mid W(t), W'(t) \in \text{typ}] - 1 + \mathbb{P}[W(t) \notin \text{typ}],$$

where typ is a certain ‘typical’ event (i.e. $\mathbb{P}[W(t) \notin \text{typ}] = o(1)$)

(i.e., in terms of the sequence of indices picked by time t (with multiplicities): $i_1, \ldots, i_{r(t)}$, and their signs).

Proof:

$$\mathbb{E}[\| \mathbb{P}[S(t) = \cdot \mid Z] - \pi \|_{TV}]$$

$$\leq \mathbb{P}[W(t) \notin \text{typ}] + \mathbb{E}[\| \mathbb{P}[S(t) = \cdot \mid Z, W(t) \in \text{typ}] - \pi \|_{TV}]$$
A modified L_2 bound

We use the modified L_2 bound:

$$
\frac{1}{2} \mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{TV}]^2
\leq |G| \mathbb{P}[S(t) = S'(t) | W(t), W'(t) \in \text{typ}] - 1 + \mathbb{P}[W(t) \notin \text{typ}],
$$

where typ is a certain ‘typical’ event (i.e. $\mathbb{P}[W(t) \notin \text{typ}] = o(1)$)
(i.e., in terms of the sequence of indices picked by time t (with multiplicities): $i_1, \ldots, i_r(t)$, and their signs).

Proof:

$$
\mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z] - \pi\|_{TV}]
\leq \mathbb{P}[W(t) \notin \text{typ}] + \mathbb{E}[\|\mathbb{P}[S(t) = \cdot | Z, W(t) \in \text{typ}] - \pi\|_{TV}]
\leq \mathbb{E}[\|\mathbb{P}[S(t) = \cdot | W(t) \in \text{typ}, Z] - \pi\|_{TV}]^2
\quad \text{(Cauchy-Schwarz)}
\leq \mathbb{E}[\|\mathbb{P}[S(t) = \cdot | W(t) \in \text{typ}, Z] - \pi\|_{2, \pi}]^2
= |G| \mathbb{P}[S(t) = S'(t) | W(t), W'(t) \in \text{typ}] - 1.
\square
Warm up - a proof of Dou’s result: For $\log k \gg \log \log n$ cutoff at time $\log_2 k n$ (where $n := |G|$)

Proof: $t := \log_2 k n$ is always a lower bound on the mixing time since in $r = t(1 - \varepsilon)$ steps the walk can only see $(2k)^r = o(n)$ vertices.
Warm up - a proof of Dou’s result: For $\log k \gg \log \log n$ cutoff at time $\log_{2k} n$ (where $n := |G|$)

Proof: $t := \log_{2k} n$ is always a lower bound on the mixing time since in $r = t(1 - \varepsilon)$ steps the walk can only see $(2k)^r = o(n)$ vertices.

Upper bound: Let $k \geq (\log n)^2$. For all choice of typ

$$n\mathbb{P}[S = S' \mid W, W' \in \text{typ}] - 1 \leq n\rho,$$

$$\rho := \mathbb{P}[\text{no generator picked once in } W \text{ and 0 in } W' \text{ or vice-versa } \mid W, W' \in \text{typ}].$$

We want a smart choice of typ so that $\rho := o(1/n)$.
Warm up - a proof of Dou's result: For \(\log k \gg \log \log n \) cutoff at time \(\log_{2k} n \) (where \(n := |G| \))

Proof: \(t := \log_{2k} n \) is always a lower bound on the mixing time since in \(r = t(1 - \varepsilon) \) steps the walk can only see \((2k)^r = o(n)\) vertices.

Upper bound: Let \(k \geq (\log n)^2 \). For all choice of \(\text{typ} \)

\[
n \mathbb{P}[S = S' \mid W, W' \in \text{typ}] - 1 \leq n \rho,
\]

\(\rho := \mathbb{P}[\text{no generator picked once in } W \text{ and } 0 \text{ in } W' \text{ or vice-versa} \mid W, W' \in \text{typ}] \). We want a smart choice of \(\text{typ} \) so that \(\rho := o(1/n) \).

We take \(\text{typ} \) to be the event that each generator is picked at most once, and between \((1 + \varepsilon/2)t\) and \(s := (1 + \varepsilon)t \) generators are used once by time \(s \).

An easy calculation (involving binomial co-efficients and Stirling’s approximation) shows that this choice works when \(t = \log_{\log k / \log n} n \).
Warm up - a proof of Dou’s result: For \(\log k \gg \log \log n \) cutoff at time \(\log_{2k} n \) (where \(n := |G| \))

Proof: \(t := \log_{2k} n \) is always a lower bound on the mixing time since in \(r = t(1 - \varepsilon) \) steps the walk can only see \((2k)^r = o(n) \) vertices.

Upper bound: Let \(k \geq (\log n)^2 \). For all choice of typ

\[
n\mathbb{P}[S = S' \mid W, W' \in \text{typ}] - 1 \leq n\rho,
\]

\(\rho := \mathbb{P}[\text{no generator picked once in } W \text{ and 0 in } W' \text{ or vice-versa} \mid W, W' \in \text{typ}] \).

We want a smart choice of typ so that \(\rho := o(1/n) \).

We take typ to be the event that each generator is picked at most once, and between \((1 + \varepsilon/2)t \) and \(s := (1 + \varepsilon)t \) generators are used once by time \(s \).

An easy calculation (involving binomial co-efficients and Stirling’s approximation) shows that this choice works when \(t = \log_k \log n \approx \log_{2k} n \) in Dou’s setup.
Warm up - a proof of Dou’s result: For \(\log k \gg \log \log n \) cutoff at time \(\log_{2k} n \) (where \(n := |G| \))

Proof: \(t := \log_{2k} n \) is always a lower bound on the mixing time since in \(r = t(1 - \varepsilon) \) steps the walk can only see \((2k)^r = o(n)\) vertices.

Upper bound: Let \(k \geq (\log n)^2 \). For all choice of \(\text{typ} \)

\[
\mathbb{P}[S = S' \mid W, W' \in \text{typ}] - 1 \leq n\rho,
\]

\(\rho := \mathbb{P}[\text{no generator picked once in } W \text{ and } 0 \text{ in } W' \text{ or vice-versa} \mid W, W' \in \text{typ}] \).

We want a smart choice of \(\text{typ} \) so that \(\rho := o(1/n) \).

We take \(\text{typ} \) to be the event that each generator is picked at most once, and between \((1 + \varepsilon/2)t\) and \(s := (1 + \varepsilon)t\) generators are used once by time \(s\).

An easy calculation (involving binomial co-efficients and Stirling’s approximation) shows that this choice works when \(t = \log_{k/\log n} n \approx \log_{2k} n \) in Dou’s setup.

A small modification to \(\text{typ} \) extends the upper bound \(\log_{k/\log n} n \) to all \(k \gg \log n \).

For abelian groups, we can prove a matching lower bound of \(\log_{k/\log n} n \) via entropic considerations, thus establishing cutoff for \(k \gg \log n \).
Warm up - a proof of Alon-Roichman’s result

Proof: When $k \geq C \log_2 n$ let $t = C' \log n$ and pick typ to be the event that roughly the right number of generators are picked once and zero times.

The choice of C' depends on C. The larger C is, the smaller C' is.
Warm up - a proof of Alon-Roichman’s result

Proof: When $k \geq C \log_2 n$ let $t = C' \log n$ and pick typ to be the event that roughly the right number of generators are picked once and zero times.

Then $\mathbb{P}[W \notin \text{typ}] \leq n^{-2c}$ and for some choice of $^5 C'$ also $\rho \leq n^{-1-2c}$.

\implies expected (w.r.t. Z) TV distance at time t is at most $2n^{-2c}$,

$\implies t_{\text{mix}}(1/n^c) \leq C' \log n$

(with failure prob. $\leq 2n^{-c}$).

5The choice of C' depends on C. The larger C is, the smaller C' is.
Warm up - a proof of Alon-Roichman’s result

Proof: When \(k \geq C \log_2 n \) let \(t = C' \log n \) and pick \(\text{typ} \) to be the event that roughly the right number of generators are picked once and zero times.

Then \(\mathbb{P}[W \notin \text{typ}] \leq n^{-2c} \) and for some choice of\(^5\) \(C' \) also \(\rho \leq n^{-1-2c} \).

\[
\implies \text{expected (w.r.t. } Z \text{) TV distance at time } t \text{ is at most } 2n^{-2c},
\]

\[
\implies t_{\text{mix}}(1/n^c) \leq C' \log n
\]

(with failure prob. \(\leq 2n^{-c} \)).

Conclude using

\[
\frac{1}{\text{gap}} \leq \frac{t_{\text{mix}}(\delta/2)}{\log(1/\delta)}
\]

\(^5\)The choice of \(C' \) depends on \(C \). The larger \(C \) is, the smaller \(C' \) is.
Warm up - a proof of Alon-Roichman’s result

Proof: When \(k \geq C \log_2 n \) let \(t = C' \log n \) and pick \(\text{typ} \) to be the event that roughly the right number of generators are picked once and zero times.

Then \(\mathbb{P}[W \notin \text{typ}] \leq n^{-2c} \) and for some choice of \(C' \) also \(\rho \leq n^{-1-2c} \).

\[\Rightarrow \] expected (w.r.t. \(Z \)) TV distance at time \(t \) is at most \(2n^{-2c} \),

\[\Rightarrow \quad t_{\text{mix}}(1/n^c) \leq C' \log n \]

(with failure prob. \(\leq 2n^{-c} \)).

Conclude using

\[\frac{1}{\text{gap}} \leq \frac{t_{\text{mix}}(\delta/2)}{\log(1/\delta)} \leq 1 \text{ for } \delta = 2/n^c. \]

\(\text{5The choice of } C' \text{ depends on } C. \text{ The larger } C \text{ is, the smaller } C' \text{ is.} \)
Wilson (97) - Proved cutoff for \mathbb{Z}_2^d conditioned on generating the group, and conjectured that if $|G| \leq 2^d$ then for all k (w.h.p.) G_k has a smaller mixing time (up to smaller order terms) than H_k for $H = \mathbb{Z}_2^d$.

Hough (17) cutoff for the cyclic group \mathbb{Z}_p with p prime and $1 \ll k \leq \log p / \log \log p$.
Wilson’s conjecture

Theorem

Wilson’s conjecture is true - \(\mathbb{Z}_2^d \) is the “slowest mixing group”.

Idea: We work with the lazy random walk, which at each step stays put w.p. \(1/2 \). The extra randomness coming from the laziness will allow us to condition on \(Z \) and \(W \) and still keep the walk \(S = S(t) \) ‘random enough’:

Let \(g_1, \ldots, g_\ell \in G \) and \(\xi_1, \ldots, \xi_\ell \) i.i.d. each equal 0 w.p. \(1/2 \) and o.w. \(\pm 1 \) with equal probability.
Wilson’s conjecture

Theorem

Wilson’s conjecture is true - \mathbb{Z}_2^d is the “slowest mixing group”.

Idea: We work with the lazy random walk, which at each step stays put w.p. 1/2. The extra randomness coming from the laziness will allow us to condition on Z and W and still keep the walk $S = S(t)$ ‘random enough’:

Let $g_1, \ldots, g_\ell \in G$ and ξ_1, \ldots, ξ_ℓ i.i.d. each equal 0 w.p. 1/2 and o.w. ± 1 with equal probability. ‘Coupon collector for groups’:

Step 1 (inspired by Erdös & Rényi): The law $g_1^{\xi_1} \cdots g_\ell^{\xi_\ell}$, given $|\sum_i |\xi_i| - \ell/2| = O(\sqrt{\ell})$, is close in TV distance to uniform, for most choice $g_1, \ldots, g_\ell \in G$, provided $\ell \geq \log_2 n - o(\sqrt{n})$.

Step 2 (inspired by Pak): Prove a ‘censoring inequality’, saying that (in the lazy setup) eliminating from S repetitions of the same generator cannot increases the expected TV distance.
Wilson’s conjecture

Theorem

Wilson’s conjecture is true - \mathbb{Z}_2^d is the “slowest mixing group”.

Idea: We work with the lazy random walk, which at each step stays put w.p. $1/2$. The extra randomness coming from the laziness will allow us to condition on Z and W and still keep the walk $S = S(t)$ ‘random enough’:

Let $g_1, \ldots, g_\ell \in G$ and ξ_1, \ldots, ξ_ℓ i.i.d. each equal 0 w.p. $1/2$ and o.w. ± 1 with equal probability. ‘Coupon collector for groups’:

Step 1 (inspired by Erdős & Rényi): The law $g_1^{\xi_1} \cdots g_\ell^{\xi_\ell}$, given $|\sum_i |\xi_i| - \ell/2| = O(\sqrt{\ell})$, is close in TV distance to uniform, for most choice $g_1, \ldots, g_\ell \in G$, provided $\ell \geq \log_2 n - o(\sqrt{n})$.

Step 2 (inspired by Pak): Prove a ‘censoring inequality’, saying that (in the lazy setup) eliminating from S repetitions of the same generator cannot increases the expected TV distance.
Wilson’s conjecture

Theorem

Wilson’s conjecture is true - \(\mathbb{Z}_2^d \) is the “slowest mixing group”.

Idea: We work with the lazy random walk, which at each step stays put w.p. 1/2. The extra randomness coming from the laziness will allow us to condition on \(Z \) and \(W \) and still keep the walk \(S = S(t) \) ‘random enough’:

Let \(g_1, \ldots, g_\ell \in G \) and \(\xi_1, \ldots, \xi_\ell \) i.i.d. each equal 0 w.p. 1/2 and o.w. \(\pm 1 \) with equal probability. ‘Coupon collector for groups’:

Step 1 (inspired by Erdös & Rényi): The law \(g_1^{\xi_1} \cdots g_\ell^{\xi_\ell} \), given

\[
|\sum_i |\xi_i| - \ell/2| = O(\sqrt{\ell}),
\]

is close in TV distance to uniform, for most choice \(g_1, \ldots, g_\ell \in G \), provided \(\ell \geq \log_2 n - o(\sqrt{n}) \).

Step 2 (inspired by Pak): Prove a ‘censoring inequality’, saying that (in the lazy setup) eliminating from \(S \) repetitions of the same generator cannot increases the expected TV distance.
Entropic times

- Let $t_0 = t_0(n, k)$ be the time at which the entropy of a rate-1 SRW on \mathbb{Z}^k equals $\log n$.
Entropic times

- Let $t_0 = t_0(n, k)$ be the time at which the entropy of a rate-1 SRW on \mathbb{Z}^k equals $\log n$.

- $t_0 \asymp kn^{2/k}$ when $k \ll \log n$,

- $t_0 \asymp \log n$ when $k \asymp \log n$.

- Let $t_m = t_0(G, k, m)$ be the time at which the entropy of SRW on \mathbb{Z}_m^k becomes $\log |G/mG|$, where for $m \in \mathbb{N}$, $mG := \{mg : g \in G\}$, (If $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$, then $mG \cong \mathbb{Z}_{m_1/\gcd(m_1,m)} \oplus \cdots \oplus \mathbb{Z}_{m_d/\gcd(m_d,m)}$)

- Let

$$T := t_0 \vee \max_{m : m | n} t_m.$$

(Remark: $T \asymp t_0$ when $k \geq (1 + \delta)d(G)$.)
Our results in the abelian setup

Recall that $1 \ll \log k \ll \log n$ and $n := |G|$. Let $d = d(G)$ be the size of the smallest set of generators.

Theorem (abelian cutoff)

For G abelian, SRW on G_k, exhibits cutoff at the entropic time T provided $k - d(G) \gg 1$
Our results in the abelian setup

Recall that $1 \ll \log k \ll \log n$ and $n := |G|$. Let $d = d(G)$ be the size of the smallest set of generators.

Theorem (abelian cutoff)

For G abelian, SRW on G_k, exhibits cutoff at the entropic time T provided $k - d(G) \gg 1$, other than when $\sqrt{\log |G| / \log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where (only if $|G|$ belongs to a density 0 set of \mathbb{N}) we need the slightly stronger assumption $k - d(G) \gg \log \log k$.
Our results in the abelian setup

Recall that $1 \ll \log k \ll \log n$ and $n := |G|$. Let $d = d(G)$ be the size of the smallest set of generators.

Theorem (abelian cutoff)

For G abelian, SRW on G_k, exhibits cutoff at the entropic time T provided $k - d(G) \gg 1$, other than when $\sqrt{\log |G| / \log \log \log |G|} \lesssim k \lesssim \sqrt{\log n}$, where (only if $|G|$ belongs to a density 0 set of \mathbb{N}) we need the slightly stronger assumption $k - d(G) \gg \log \log k$.

Under mild conditions $T = t_0$, which depends only on $|G|$ and k, which is consistent with the Aldous-Diaconis conjecture.

The cutoff shape is Gaussian and is governed by the fluctuations of the r.v. whose mean is the entropy of W_t: i.e. $-\log \mu(W_t)$, where μ is the law of W_t.
Heisenberg Matrix Groups

Let $G = H_{p,d}$ be the Heisenberg group of $d \times d$ uni-upper triangular matrices with integer entries mod p.

For $A, B \in G$ we have $(AB)_{i,i+1} = A_{i,i+1} + B_{i,i+1}$ and the Abelianization $G/[G, G]$ is $\cong \mathbb{Z}_p^{d-1}$.
Heisenberg Matrix Groups

Let \(G = H_{p,d} \) be the Heisenberg group of \(d \times d \) uni-upper triangular matrices with integer entries mod \(p \).

For \(A, B \in G \) we have \((AB)_{i,i+1} = A_{i,i+1} + B_{i,i+1}\) and the Abelianization \(G/[G, G] \) is \(\cong \mathbb{Z}_{p}^{d-1} \).

Theorem (Heisenberg Groups - cutoff)

Let \(G := H_{p,d} \) with \(p \) prime and \(d \geq 3 \) fixed or diverging slowly and \(k \) be s.t. \(1 \ll \log k \ll \log |G| \). Then, w.h.p. (as \(p \to \infty \)), the SRW on the \(G_k \) exhibits cutoff at time

\[
t_*(k, p, d) := \max\{\log_k n, \ t_0(k, p^{d-1})\}.
\]
Heisenberg Matrix Groups

Let $G = H_{p,d}$ be the Heisenberg group of $d \times d$ uni-upper triangular matrices with integer entries mod p.

For $A, B \in G$ we have $(AB)_{i,i+1} = A_{i,i+1} + B_{i,i+1}$ and the Abelianization $G/[G, G]$ is $\cong \mathbb{Z}_p^{d-1}$.

Theorem (Heisenberg Groups - cutoff)

Let $G := H_{p,d}$ with p prime and $d \geq 3$ fixed or diverging slowly and k be s.t. $1 \ll \log k \ll \log |G|$. Then, w.h.p. (as $p \to \infty$), the SRW on the G_k exhibits cutoff at time

$$t_*(k, p, d) := \max\{\log_k n, \ t_0(k, p^{d-1})\}.$$

Furthermore,

$$t_*(k, p, d) \sim \begin{cases}
 t_0(k, p^{d-1}) & \text{when } k \leq (\log n)^{1+2/(d-2)}, \\
 \log_k n & \text{when } k \geq (\log n)^{1+2/(d-2)}.
\end{cases}$$
For a probability μ and $X \sim \mu$, the entropy is

$$\text{Ent}\mu := -\sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)].$$
Lower bound

- For a probability μ and $X \sim \mu$, the entropy is
 \[
 \text{Ent}\mu := -\sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)].
 \]

- As $-\log \mu(W(t)) = -\sum_{i=1}^k \log \nu(W_i(t))$, where μ and ν are the laws of $W(t)$ and $W_1(t)$, resp., by CLT it is concentrated around its mean (\(\equiv\) entropy) when $k \gg 1$.

Jonathan Hermon (UBC) Random Cayley Graphs Stanford University, 2020 31 / 41
Lower bound

- For a probability μ and $X \sim \mu$, the **entropy** is
 \[
 \text{Ent}\mu := - \sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)].
 \]

- As $-\log \mu(W(t)) = - \sum_{i=1}^k \log \nu(W_i(t))$, where μ and ν are the laws of $W(t)$ and $W_1(t)$, resp., by CLT it is concentrated around its mean (= entropy) when $k \gg 1$.

- We first argue that the walk is ‘far from being mixed’ (i.e. TV distance $1 - o(1)$) at time $t_\sim = t_0(1 - o(1))$, for some choice of $o(1)$ terms.

- A calculation shows that by changing t a little around t_0 we can change the entropy ‘a lot’,

Lower bound

- For a probability μ and $X \sim \mu$, the **entropy** is
 \[
 \text{Ent}\mu := - \sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)].
 \]

- As $-\log \mu(W(t)) = - \sum_{i=1}^k \log \nu(W_i(t))$, where μ and ν are the laws of $W(t)$ and $W_1(t)$, resp.,
 by CLT it is concentrated around its mean (\(=\) entropy) when $k \gg 1$.

- We first argue that the walk is ‘far from being mixed’ (i.e. TV distance $1 - o(1)$) at time $t_- = t_0(1 - o(1))$, for some choice of $o(1)$ terms.

- A calculation shows that by changing t a little around t_0 we can change the entropy ‘a lot’, i.e. by a diverging additive term, which is much larger than the typical fluctuations of $-\log \mu(W(t))$, ...
Lower bound

- For a probability μ and $X \sim \mu$, the entropy is
 \[\text{Ent}\mu := -\sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)]. \]

- As $-\log \mu(W(t)) = -\sum_{i=1}^k \log \nu(W_i(t))$, where μ and ν are the laws of $W(t)$ and $W_1(t)$, resp., by CLT it is concentrated around its mean (= entropy) when $k \gg 1$.

- We first argue that the walk is ‘far from being mixed’ (i.e. TV distance $1 - o(1)$) at time $t_- = t_0(1 - o(1))$, for some choice of $o(1)$ terms.

- A calculation shows that by changing t a little around t_0 we can change the entropy ‘a lot’, i.e. by a diverging additive term, which is much larger than the typical fluctuations of $-\log \mu(W(t))$, and that
 \[\text{Var}(\log \mu(W(t))) = (1 \pm o(1))\text{Var}(\log \mu(W(t_0))). \]
Lower bound

- For a probability μ and $X \sim \mu$, the entropy is
 \[\text{Ent}_\mu := -\sum_x \mu(x) \log \mu(x) = -\mathbb{E}[\log \mu(X)]. \]

- As $-\log \mu(W(t)) = -\sum_{i=1}^k \log \nu(W_i(t))$, where μ and ν are the laws of $W(t)$ and $W_1(t)$, resp., by CLT it is concentrated around its mean (=entropy) when $k \gg 1$.

- We first argue that the walk is ‘far from being mixed’ (i.e. TV distance $1 - o(1)$) at time $t_\sim = t_0(1 - o(1))$, for some choice of $o(1)$ terms.

- A calculation shows that by changing t a little around t_0 we can change the entropy ‘a lot’, i.e. by a diverging additive term, which is much larger than the typical fluctuations of $-\log \mu(W(t))$, and that
 \[\text{Var}(\log \mu(W(t))) = (1 \pm o(1))\text{Var}(\log \mu(W(t_0))). \]

 \implies For some $t_\sim = (1 - o(1))t_0$ and $\omega \gg 1$ w.h.p.
 \[\log n - \log \mu(W(t)) \geq 2\omega \text{ i.e. } \mu(W(t)) \geq e^{\omega/n}. \]
Lower bound

- (CLT) $- \log \mu(W)$ is concentrated around its mean (entropy) when $k \gg 1$.

- A calculation shows that changing t a little around t_0 changed the entropy ‘a lot’, i.e. by much more than the typical fluctuations of $- \log \mu(W(t))$, and that $\text{Var}(\log \mu(W(t))) = (1 \pm o(1)) \text{Var}(\log \mu(W(t_0)))$.

- \implies For some $t_\pm = t = (1 - o(1))t_0$ and $\omega \gg 1$ w.h.p. $\mu(W(t)) \geq e^\omega / n$.

- On this event (which holds w.h.p.) $W(t)$ belongs to a set of size $\frac{n}{e^\omega} = o(n)$. (if all points in a set have probability at least p, its size is at most $1/p$).
Lower bound

- (CLT) $- \log \mu(W)$ is concentrated around its mean (entropy) when $k \gg 1$.
- A calculation shows that changing t a little around t_0 changed the entropy ‘a lot’, i.e. by much more than the typical fluctuations of $- \log \mu(W(t))$, and that $\text{Var}(\log \mu(W(t))) = (1 \pm o(1)) \text{Var}(\log \mu(W(t_0)))$.
- \implies For some $t_- = t = (1 - o(1)) t_0$ and $\omega \gg 1$ w.h.p. $\mu(W(t)) \geq e^{\omega}/n$.
- On this event (which holds w.h.p.) $W(t)$ belongs to a set of size $\frac{n}{e^{\omega}} = o(n)$. (if all points in a set have probability at least p, its size is at most $1/p$).
- By projecting so does $S(t) = W(t) \cdot Z$, so for all Z not mixed.
Lower bound

- (CLT) $-\log \mu(W)$ is concentrated around its mean (entropy) when $k \gg 1$.
- A calculation shows that changing t a little around t_0 changed the entropy ‘a lot’, i.e. by much more than the typical fluctuations of $-\log \mu(W(t))$, and that $\text{Var}(\log \mu(W(t))) = (1 \pm o(1))\text{Var}(\log \mu(W(t_0)))$.
- \implies For some $t_\approx = t = (1 - o(1))t_0$ and $\omega \gg 1$ w.h.p. $\mu(W(t)) \geq e^{\omega}/n$.
- On this event (which holds w.h.p.) $W(t)$ belongs to a set of size $\frac{n}{e^\omega} = o(n)$.
 (if all points in a set have probability at least p, its size is at most $1/p$).
- By projecting so does $S(t) = W(t) \cdot Z$, so for all Z not mixed.
- Similarly, $t_m(1 - o(1))$ can be shown to be a lower bound on the mixing time for all Z by considering $S(t)(mG)$, which is the induced walk on G/mG, and repeating the above argument to it.
Lower bound

- Similarly, $t_m(1 - o(1))$ can be shown to be a lower bound on the mixing time for all Z by considering $S(t)(mG)$, which is the induced walk on G/mG, and repeating the above argument to it:

- $S(t)$ is not mixed if this induced walk is not mixed.
Similarly, $t_m(1 - o(1))$ can be shown to be a lower bound on the mixing time for all Z by considering $S(t)(mG)$, which is the induced walk on G/mG, and repeating the above argument to it:

- $S(t)$ is not mixed if this induced walk is not mixed.
- As before, by projection, $S(t)(mG)$ cannot be mixed if $(W(t) \mod m)$ w.h.p. belongs to a set of size $o(|G/mG|)$.
Similarly, $t_m(1 - o(1))$ can be shown to be a lower bound on the mixing time for all Z by considering $S(t)(mG)$, which is the induced walk on G/mG, and repeating the above argument to it:

- $S(t)$ is not mixed if this induced walk is not mixed.

- As before, by projection, $S(t)(mG)$ cannot be mixed if $(W(t) \mod m)$ w.h.p. belongs to a set of size $o(|G/mG|)$; but as for $m = 0$, this is the case for $t \leq (1 - o(1))t_m$ (by def of t_m, concentration of $\log(\mu_p(W(t) \mod m))$, with μ_p being the law of $W(t) \mod m$), and since we the mean of this r.v. can changes by a between time $(1 - o(1))t_m$ and t_m by much more than the SD).
Upper bound: Warm up $G = \mathbb{Z}_p^d$ for p prime

- Let $t = (1 + o(1))t_p$. Write W for $W(t)$.
- We use our modified L_2 argument with $\text{typ} = \{W \in \mathcal{W}\}$, where

$$\mathcal{W} = \{w \in \mathbb{Z}^k : \mathbb{P}[W \equiv w \mod p] \leq \delta\},$$

where $\delta = \delta(n) = o(1/n)$ and $n := |G|$.
- By the def. of t_p and concentration of $\log(\mu_p(W \mod p))$, where μ_p is the law of $W \mod p$, indeed $\mathbb{P}[\text{typ}^c] = o(1)$ as desired, for some δ as above.

6If $\gcd(a, n) = 1$ then $g \mapsto g^a$ is invertible (by $g \mapsto g^b$ s.t. $ab \equiv 1 \mod n$) and so $X^a \sim \text{Unif}(G)$ whenever $X \sim \text{Unif}(G)$.
Upper bound: Warm up $G = \mathbb{Z}_p^d$ for p prime

- Let $t = (1 + o(1))t_p$. Write W for $W(t)$.
- We use our modified L_2 argument with typ = $\{W \in \mathcal{W}\}$, where
 \[
 \mathcal{W} = \{w \in \mathbb{Z}^k : \mathbb{P}[W \equiv w \text{ mod } p] \leq \delta\},
 \]
 where $\delta = \delta(n) = o(1/n)$ and $n := |G|$.
- By the def. of t_p and concentration of $\log(\mu_p(W \text{ mod } p))$, where μ_p is the law of $W \text{ mod } p$, indeed $\mathbb{P}[^{\text{typ}}\mathcal{C}] = o(1)$ as desired, for some δ as above.
- Recall $S = W \cdot Z = \sum_{i=1}^k W_iZ_i$ and $S' = W' \cdot Z$ with W' indep. of W.
- Note that if $W \not\equiv W' \text{ mod } p$ then $S - S' \sim \text{Uniform}(\mathbb{Z}_p^d)$.
 Thus
 \[
 n\mathbb{P}[S = S' \mid \text{typ}] - 1 \leq n\mathbb{P}[W \equiv W' \text{ mod } p \mid \text{typ}]
 \]

If $\gcd(a, n) = 1$ then $g \mapsto g^a$ is invertible (by $g \mapsto g^b$ s.t. $ab \equiv 1 \text{ mod } n$) and so $X^a \sim \text{Unif}(G)$ whenever $X \sim \text{Unif}(G)$.
Upper bound: Warm up $G = \mathbb{Z}_p^d$ for p prime

- Let $t = (1 + o(1))t_p$. Write W for $W(t)$.

- We use our modified L_2 argument with $\text{typ} = \{ W \in \mathcal{W} \}$, where

 \[\mathcal{W} = \{ w \in \mathbb{Z}^k : \mathbb{P}[W \equiv w \mod p] \leq \delta \}, \]

 where $\delta = \delta(n) = o(1/n)$ and $n := |G|$.

- By the def. of t_p and concentration of $\log(\mu_p(W \mod p))$, where μ_p is the law of $W \mod p$, indeed $\mathbb{P}[\text{typ}^c] = o(1)$ as desired, for some δ as above.

- Recall $S = W \cdot Z = \sum_{i=1}^k W_i Z_i$ and $S' = W' \cdot Z$ with W' indep. of W.

- Note that if $W \not\equiv W' \mod p$ then $S - S' \sim \text{Uniform}(\mathbb{Z}_p^d)$.\(^6\) Thus

 \[n\mathbb{P}[S = S' \mid \text{typ}] - 1 \leq n\mathbb{P}[W \equiv W' \mod p \mid \text{typ}] \lesssim n\delta = o(1). \]

\(^6\)If $\gcd(a, n) = 1$ then $g \mapsto g^a$ is invertible (by $g \mapsto g^b$ s.t. $ab \equiv 1 \mod n$) and so $X^a \sim \text{Unif}(G)$ whenever $X \sim \text{Unif}(G)$.

The idea extends to general G. Want $W \subset \mathbb{Z}^k$ such that $W \in \mathcal{W}$ w.h.p. and

$$|G|\rho - 1 = o(1),$$

where $\rho := \mathbb{P}[S = S' \mid W, W' \in \mathcal{W}]$.

$$\rho = \underbrace{\mathbb{P}[W = W' \mid W, W' \in \mathcal{W}]}_{= A} + \underbrace{\mathbb{P}[S = S' \mid W \neq W' \in \mathcal{W}]}_{= B}.$$
General abelian \(G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d} \)

- The idea extends to general \(G \). Want \(\mathcal{W} \subset \mathbb{Z}^k \) such that \(\mathcal{W} \in \mathcal{W} \) w.h.p. and

\[
|G|\rho - 1 = o(1), \text{ where } \rho := \mathbb{P}[S = S' \mid \mathcal{W}, \mathcal{W}' \in \mathcal{W}].
\]

\[
\rho = \underbrace{\mathbb{P}[W = W' \mid W, W' \in \mathcal{W}]}_{=A} + \underbrace{\mathbb{P}[S = S' \mid W \not= W' \in \mathcal{W}]}_{=B}.
\]

If \(t \geq (1 + o(1))t_0 \) and \(\mathcal{W} \subset \mathcal{W}_0 := \{ w \in \mathbb{Z}^k : \mathbb{P}[W = w] \leq \varepsilon_0/n \} \), for some appropriate choice of \(\varepsilon_0 = o(1) \), then as before:

\(nA \lesssim \varepsilon_0 = o(1) \), and we will have \(\mathcal{W} \in \mathcal{W}_0 \) w.h.p.\(^7\)

\(^7\)By concentration of \(\log(\mu(W)) \), the def. of \(t_0 \) and the rapid change of entropy.
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- The idea extends to general G. Want $\mathcal{W} \subset \mathbb{Z}^k$ such that $W \in \mathcal{W}$ w.h.p. and

$$|G|\rho - 1 = o(1), \text{ where } \rho := \mathbb{P}[S = S' \mid W, W' \in \mathcal{W}].$$

$$\rho = \mathbb{P}[W = W' \mid W, W' \in \mathcal{W}] + \mathbb{P}[S = S' \mid W \neq W' \in \mathcal{W}].$$

If $t \geq (1 + o(1))t_0$ and $\mathcal{W} \subset \mathcal{W}_0 := \{w \in \mathbb{Z}^k : \mathbb{P}[W = w] \leq \varepsilon_0/n\}$, for some appropriate choice of $\varepsilon_0 = o(1)$, then as before:

$nA \lesssim \varepsilon_0 = o(1)$, and we will have $W \in \mathcal{W}_0$ w.h.p.\(^7\)

Given $(W, W') = (w, w)$ we have $S - S' \sim \text{Unif}(gG)$, where $g := \gcd(V_1, \ldots, V_k, n)$ (recall $V_i := W_i - W'_i$),

$$\implies |G|\mathbb{P}[S = S' \mid W, W', g] = \frac{|G|}{|gG|} \leq g^d \wedge n.$$
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- The idea extends to general G. Want $\mathcal{W} \subset \mathbb{Z}^k$ such that $W \in \mathcal{W}$ w.h.p. and

 $$|G|\rho - 1 = o(1), \text{ where } \rho := \mathbb{P}[S = S' \mid W, W' \in \mathcal{W}].$$

 $$\rho = \mathbb{P}[W = W' \mid W, W' \in \mathcal{W}] + \mathbb{P}[S = S' \mid W \neq W' \in \mathcal{W}].$$

If $t \geq (1 + o(1))t_0$ and $\mathcal{W} \subset \mathcal{W}_0 := \{w \in \mathbb{Z}^k : \mathbb{P}[W = w] \leq \varepsilon_0/n\}$, for some appropriate choice of $\varepsilon_0 = o(1)$, then as before:

$nA \leq \varepsilon_0 = o(1)$, and we will have $W \in \mathcal{W}_0$ w.h.p.

Given $(W, W') = (w, w)$ we have $S - S' \sim \text{Unif}(gG)$, where $g := \gcd(V_1, \ldots, V_k, n)$ (recall $V_i := W_i - W_i'$),

$$\implies |G|\mathbb{P}[S = S' \mid W, W', g] = \frac{|G|}{|gG|} \leq g^d \wedge n.$$

$$\implies |G|B - 1 \leq \mathbb{E}[(g^d \wedge n)\mathbf{1}\{g > 1\} \mid W \neq W' \in \mathcal{W}].$$

7By concentration of $\log(\mu(W))$, the def. of t_0 and the rapid change of entropy.
Upper bound for general abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Our problem is reduced to arguing that for $t = (1 + o(1))T$ for some choice of $\mathcal{W} \supset \mathcal{W}_0$ we have

$$(\ast) := \mathbb{E}[(g^d \wedge n)1\{g > 1\} \mid \mathcal{W} \neq \mathcal{W}' \in \mathcal{W}] = o(1).$$
Upper bound for general abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Our problem is reduced to arguing that for $t = (1 + o(1)) T$ for some choice of $\mathcal{W} \supset \mathcal{W}_0$ we have

 \[(\ast) := \mathbb{E}[(g^d \wedge n) \mathbf{1}_{\{g > 1\}} \mid \mathcal{W} \neq \mathcal{W}' \in \mathcal{W}] = o(1)\].

- A calculation reveals that $T \lesssim kn^{2/k} \log k$ and thus w.h.p. $\max_i |\mathcal{W}_i| \leq r_* = n^{1/k} (\log k)^2$.

Jonathan Hermon (UBC)
Random Cayley Graphs
Stanford University, 2020
Our problem is reduced to arguing that for \(t = (1 + o(1)) T \) for some choice of \(\mathcal{W} \supset \mathcal{W}_0 \) we have

\[
(*) := \mathbb{E}[(g^d \wedge n)1\{g > 1\} \mid \mathcal{W} \neq \mathcal{W}' \in \mathcal{W}] = o(1).
\]

A calculation reveals that \(T \lesssim kn^{2/k} \log k \) and thus \(\text{w.h.p.} \) \(\max_i |W_i| \leq r_* = n^{1/k}(\log k)^2 \).

Including this constraint in \(\mathcal{W} \), we only need to consider \(g \in [2, 2r_*] \).
Upper bound for general abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Our problem is reduced to arguing that for $t = (1 + o(1))T$ for some choice of $\mathcal{W} \supset \mathcal{W}_0$ we have

\[
(\ast) := \mathbb{E}[(\ell^d \land n) \mathbf{1}\{\ell > 1\} \mid \mathcal{W} \neq \mathcal{W}' \in \mathcal{W}] = o(1).
\]

- A calculation reveals that $T \lesssim kn^{2/k} \log k$ and thus w.h.p.

\[
\max_i |\mathcal{W}_i| \leq r_* = n^{1/k}(\log k)^2.
\]

- Including this constraint in \mathcal{W}, we only need to consider $\ell \in [2, 2r_*]$.

Using $\mathbb{P}[D \mid E] \leq P[D]/P[E] = (1 + o(1))P[E]$ if $P[E^c] = o(1)$:

\[
(\ast) \leq (1 + o(1)) \sum_{\ell=2}^{2r_*} (\ell^d \land n) \mathbb{P}[\ell \text{ divides all of } V_1, \ldots, V_k].
\]
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Recall $r_* := n^{1/k} (\log k)^2$. Want

 $$ 2r_* \sum_{\ell=2}^{2r_*} (\ell^d \wedge n) \mathbb{P}[\ell \text{ divides all of } V_1, \ldots, V_k] = o(1). $$

- We will show

 $$ \mathbb{P}[\ell \text{ divides } V_1] \leq \mathbb{P}[V_1 = 0] + 1/\ell \approx \frac{C'}{n^{1/k}} + 1/\ell. $$
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Recall $r_* := n^{1/k}(\log k)^2$. Want

$$
(\ast \ast) := \sum_{\ell=2}^{2r_*} (\ell^d \land n) P[\ell \text{ divides all of } V_1, \ldots, V_k] = o(1).
$$

- We will show

$$
P[\ell \text{ divides } V_1] \leq P[V_1 = 0] + 1/\ell \approx \frac{C'}{n^{1/k}} + 1/\ell.
$$

- Substituting in (\ast \ast) and using the fact that V_1, \ldots, V_k are i.i.d.,

$$
(\ast \ast) \leq \sum_{\ell=2}^{2r_*} (\ell^d \land n) \left[\frac{C'}{n^{1/k}} + 1/\ell \right]^k = o(1),
$$

if $k \ll \log n$ and k is “a bit” larger than d.
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

- Recall $r_* := n^{1/k} (\log k)^2$. Want

$$2r_* \sum_{\ell=2}^{2r_*} (\ell^d \land n) \mathbb{P}[\ell \text{ divides all of } V_1, \ldots, V_k] = o(1).$$

- We will show

$$\mathbb{P}[\ell \text{ divides } V_1] \leq \mathbb{P}[V_1 = 0] + 1/\ell \approx \frac{C'}{n^{1/k}} + 1/\ell.$$

- Substituting in $(**)$ and using the fact that V_1, \ldots, V_k are i.i.d.,

$$(**) \leq \sum_{\ell=2}^{2r_*} (\ell^d \land n) \left[\frac{C'}{n^{1/k}} + 1/\ell \right]^k = o(1),$$

if $k \ll \log n$ and k is “a bit” larger than d. How much is “a bit” depends on k. For $k \ll \sqrt{\log n / \log \log \log n}$ it turns out $k - d \gg 1$ suffices.
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

Proof of: $\mathbb{P}[\ell \text{ divides } V_1] \leq \mathbb{P}[V_1 = 0] + 1/\ell$

Given $V_1 \neq 0$ (by unimodality) the conditional law of $|V_1|$ is unimodal, and thus can be written as a mixture of uniform distributions $\text{Unif}([1, \ldots, Y])$, where Y is random.
General abelian $G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_d}$

Proof of: $\Pr[\ell \text{ divides } V_1] \leq \Pr[V_1 = 0] + 1/\ell$

- Given $V_1 \neq 0$ (by unimodality) the conditional law of $|V_1|$ is unimodal, and thus can be written as a mixture of uniform distributions $\operatorname{Unif}\{1, \ldots, Y\}$, where Y is random.

\implies the probability that ℓ divides V_1, given $V_1 \neq 0$, is at most $1/\ell$. \qed
General abelian G of size n

To treat $k \asymp \log n$ and to allow $k - d$ to diverge arbitrary slowly for $k \gg \sqrt{\log n}$ we can no longer use the bound $\frac{|G|}{|\ell G|} \leq \ell^d \land n$ and instead need to show for $t = (1 + \delta)T$ that for some ”typical” \mathcal{W},

\[
(\ast \ast \ast) := \sum_{\ell \in [2, 2r_*]: \ell | n} \frac{|G|}{|\ell G|} \mathbb{P}[\ell \text{ divides all of } V_1, \ldots, V_k \mid W, W' \in \mathcal{W}] = o(1).
\]
General abelian G of size n

Need to show for $t = (1 + \delta)T$ that for some ‘typical’ \mathcal{W},

$$(* * *) := \sum_{\ell \in [2, 2r_*]: \ell | n} \frac{|G|}{|\ell G|} P[W \equiv W' \mod \ell | W, W' \in \mathcal{W}] = o(1).$$

- For some $\varepsilon = o(1/r_*)$ consider

$$\mathcal{W}_\ell := \{w \in \mathbb{Z}^k : P[W = w \mod a] \leq \varepsilon / |G/\ell G|\},$$

and $\mathcal{W} := \mathcal{W}_0 \cap \{w : \max_i |w_i| \leq r_* \} \cap (\bigcap_{[2, 2r_*]: \ell | n} \mathcal{W}_\ell)$.
General abelian G of size n

Need to show for $t = (1 + \delta)T$ that for some ‘typical’ \mathcal{W},

\[(**\star\star\star) := \sum_{\ell \in [2, 2r_*]: \ell | n} \frac{|G|}{|\ell G|} \mathbb{P}[\mathcal{W} \equiv \mathcal{W}' \mod \ell | \mathcal{W}, \mathcal{W}' \in \mathcal{W}] = o(1).\]

- For some $\varepsilon = o(1/r_*)$ consider

$$\mathcal{W}_\ell := \{w \in \mathbb{Z}^k : \mathbb{P}[\mathcal{W} = w \mod a] \leq \varepsilon/|G/\ell G|\},$$

and $\mathcal{W} := \mathcal{W}_0 \cap \{w : \max_i |w_i| \leq r_*\} \cap (\bigcap_{\ell | n} \mathcal{W}_\ell)$.

- For this \mathcal{W}: $(**\star\star\star) \leq \varepsilon r_* = o(1)$.

- Turns out we can take $\varepsilon = e^{-\Omega(\delta)k}$ and still have that \mathcal{W} is ‘typical’, and for $k \gg \sqrt{\log n}$ can pick $\delta = o(1)$ so that indeed $e^{-\Omega(\delta)k} \ll n^{-1/k}(\log k)^{-2} \leq 1/r_*$.

\[\square\]
Thank you for your attention.