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CHAPTER 4

Weak Solutions, Part I1

4.1. Guide

This chapter covers the well-known theory of De Giorgi-Nash-Moser. We
present both the approach of De Giorgi and of Moser so students can make com-
parisons and can see that the ideas involved are essentially the same. The classical -
paper [12] is certainly very nice material for further reading. One may also wish to
compare the results in [12] and [7].

4.2. Local Boundedness

In the following three sections we will discuss the De Giorgi-Nash-Moser the-
ory for linear elliptic equations. In this section we will prove the local boundedness
of solutions. In the next section we will prove Holder continuity. Then in Section
4.4 we will discuss the Harnack inequality. For all results in these three sections
there is no regularity assumption of coefficients.

The main theorem of this section is the following boundedness resullt.

THEOREM 4.1. Suppose a;j € L°(By) and ¢ € L9(B,) for some q¢ > n/2
satisfy the following assumptions

a;j (x)&:& > A|E)? Jorany x € By, £ ¢ R* and laijlroo + llcllre < A

Jor some positive constants A and A. Suppose that u € H'(B)) is a subsolution in
the following sense ‘

() /aijDiungo + cup < / fo forany g e HOI(Bl) and ¢ > 0in B, .

B B
If f € L1(By), thenu™ ¢ L3 (By). Moreover, there holds for any 60 € (0, 1) and
any p > 0

‘ 1
+ i
SE}’” < C{“—(l oy e NlLecs,) + ”f”Lq(Bl)}

where C = C(n, A, A, P, q) is a positive constant.

In the following we use two approaches to prove this theorem, the one by De
Giorgi and the other by Moser.

PROOF. We first prove for § = 1/2 and p = 2.

METHOD 1. Approach by De Giorgi.
67



68 4. WEAK SOLUTIONS, PART II

Consider v = (u — k)" for k > O and ¢ € Cj(B;). Set ¢ = v¢? as the test
function. Note v = u — k, Dv = Du ae.in {u > k}andv = 0, Dv = 0 a.e.
in {u < k}. Hence if we substitute such defined ¢ in (*), we integrate in the set
{u > k}.

By Holder inequality we have

/aijD,-ungo =/a,-jD,-uDjvg“z+2aijDiuDj§v§

= [ 1DoPs? —2a [ 1DvliDsug

P 2A?
>= | |D 22_——/1) 22,
~2/| oi?e? ~ == [ 1]
Hence we obtain

| /|Dvlzczs C{/v2|D§I2+/l0|v2§2+k2/!c|§2+/Iflvs“z}

from which the estimate

fID(v§)|2 < C[/vleCIZ+fICIv2§2+k2/ICI§2+/|flv§2}

follows.
. Recall the Sobolev inequality for v € H (B))

2
2%

/ W) | < e / IDE)P
Bi By

where 2% = 2n/(n — 2) for n > 2 and 2* > 2 is arbitrary if n = 2. Holder
inequality implies that with § > 0 small and ¢ < 1

’/|f|v¢25 </|f|">é (/Ivflz*)%l{% £ 0=

< c)| fllze (/ ID(v§)I2)2 [{vg 5 0}|2Fa~q

2
n

QN

sa/|D<v;>|2+c<n,a>uf||%q!{v§ £ 0}

Note 1 + % — ?3‘ > 1 — ;]1— if ¢ > n/2. Therefore we have the following estimate:

/'D(vé“)lzs C{/UZID§|2+/Ic|v2§2—I—k2/ICI§2+F2|{U§ #O}Il_qx}

where F' = || f|lLa¢,)-
We claim that there holds

(“4.1) /lD(vg)F = c{ / V2| D¢ + (K + F2)|{vg # 0}11‘%}
if [{v¢ # 0}] is small.



It is obvious if ¢ = 0. In fact, in this special case there is no restriction on the _é_j/
set {v¢ # 0}. In general, Holder inequality implies that

/1c|v2;2 < (/ w) </<v;>2) 02 £ o)1-F
Sc(n)/lD(UC)IZ (/ |c|q) (e # 0}

1
a 1
/|c|§2 < (f chQ> (v # 0)]'"F .
Therefore we have

le(vc>|2's "

{/v |D¢ +/ID(UC)I (vg # 0}" 77 + (K + F?)|{v¢ #O}II"}

This implies (4.1) if |{v¢ 7% 0}] is small.
To continue we obtain by Sobolev inequality

and

[wor < (/(v;)z*)z* g £ 01 F < et [ ID@EIPIE # 0}

Therefore we have
f@;)z < c{ / Dz PI{vg # O} + (k + F)2|{vg # 0}|1+H}

if [{v¢ s 0}| is small. Hence there exists an ¢ > 0 such that

f(v:)z < c{ / VDL PIvg # 0)° + (k + F)?|(vg # 0}|1'+8}

if |{ve s 0}] is small. Choose the cut-off function in the following way. For any
fixed 0 <r < R < 1choose { € Cg°(Bg) suchthat{ = 1in B, and 0 < ¢ <1
and |D¢| < 2(R —r)~!in B,. Set

Ak, r) = {x € B,;u > k}.

We conclude that forany 0 <r < R <landk >0

(4.2) / u—k)?* <

A(k,r)

1 :
C{ = R Ak R / u — k) + (k + F)?*| Ak, R>|l+6}
A(k,R)
if |A(k, R)| is small. Note
1

1
Ak, B = ¢ / wt < e

A(k,R)



70 4. WEAK SOLUTIONS, PART I

Hence (4.2) holds if k > kg = C|lu|| 2 for some large C depending only on A and
A.
Next we would show that there exists some k = C (kg + F') such that

(u—k)? =
Alk,1/2)

To continue we take any & > k > kg and any 0 < r < 1. It is obvious that
A(k,r) D A(h, r). Hence we have

f(u—h)zs /(u—-k)2

A(h,r) Ak,r)
and

1 2
AG = 1B N =k > h =Bl = 5 [ =i,
Alk,r)
Therefore by (4.2) we have forany 4 > k > kgand 1/2 <r <R <1

/(u—h)zsc{(R—_l—r—)E / <u—h>2+<h+F)2|A<h,R>|}|A<h,R>|8

A(h,r) A(h,R)

1+4¢
1 m+Fﬁ ,
Sc{m—r)z (h—k>2 = k)ZE(A/ L

(k,R)
or _
1 h+ F 1
- + 1\ tylte
@3) I~ e, < C{ e e } ayer (GO M P
Now we carry out the iteration. Set ¢ (k,r) = |[(u — k)™ ;2(p,). For T = 1/2 and

some k > 0 to be determined. Define for £ =0, 1, 2, ..
ke = ko + k(1 — L) (< ko+k)
re=1t+3z(1—-1).
Obviously we have '
ke —keoy = 27, re-1 —re =5 (1 —1).
Therefore we have for £ =0, 1, 2, ...

e +#%+F+@}W

N

p(ke, re) < C{ —[p kg1, ro—1)]'**

l1—-1 k
C ko+ F +k
=17 " e 20498 [ kg1, re—1)]'"* .
Next we prove inductively forany £ =0, 1, ...,
@ (ko, 7o)

(4.4) @(ke, re) < T for some y > 1
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if k is sufficiently large. Obviously it is true for £ == 0. Suppose it is true for £ — 1.
We write

¢ (ko, 7o) }‘*”‘ ko, 70)°  p(ko, 7o)

14
[p(ke—1, re—1)] ° { ye_l - yte—(1+e) ) !

Then we obtain

C 1+e k F k 2€(I+£)- k,
Y R ko o)) y&, -g"(;[‘)).

QD(ke, re) = 1 —1 k1+€

Choose y first such that ¢ = 2!*¢, Note y > 1 . Next, we need
Cylte ((p(ko, 7’0))8 ko+ F +k

<
1—7 k k -
Therefore we choose
k = Ci{ko + F + @(ko, ro)}
for C, large Let £ — +o00 in (4.4). We conclude

¢lko+k,7)=0.

Hence we have

supu’ < (Cy + Diko + F + ¢(ko, 7o)} -
B2

Recall ko = Cllu™||2¢5,) and @ (ko, 7o) < |lu*||2¢p,). This finishes the proof,
Next we give the second proof of Theorem 4.1.

METHOD 2. Approach by Moser.

First we explain the idea. By choosing the test function appropriately, we will
estimate the L?! norm of u in a smaller ball by the L2 norm of u for p; > p;ina
larger ball, that is,

lullLer s,y < CllullLras,,)
for py > py and r; < r,. This is a reversed Holder inequality. As a sacrifice C
behaves like ﬁ By iteration and careful choice of {r;} and {p;}, we will obtain
the result.

For some k > Oandm > 0, sett = ut + k and

_ ju ifu<m
" Nk+m  ifu >m.
Then we have Dii,, = 0in {u < 0} and {# > m} and &,, < i. Set the test function
¢ = n*(abhu — k°*') € Hy (By)

for some B > 0 and some nonnegative function n € Cé(Bl). Direct calculation
yields '

Dy = Bn?al ! Diiyii + n*iaf Dii + 2nDn (il ii — kPt
= 73 uﬁ (BDu,, + Dir) + 277Dn(u i — kP .
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We should emphasize that later on we will begin the iteration with 8 = 0. Note
¢ = 0 and D¢ = 0 in {# < 0}. Hence if we substitute such ¢ in the equation we

integrate in the set {u > 0}. Note also that u™ < & and ﬁfzﬁ — kBt < ﬁﬂﬁ for
k > 0. First we have by Holder inequality

/aijDiuDj(p=/aijDiﬁ(,BDjﬁi;z+Dj12)772ﬁ51
+2/al’f'DiﬁDjﬁ(ﬁ,’fz kP hn
Z)»,Bl/n umlDuml +)‘/77 umlDulz—A/IDuHDnlumun

Hence we obtain by noting i > &

13/77 unlIDuﬂllz /n u]nIDulz
<cf [ioneaa+ [ (ewaga +17aga)

=< C{/IDnlzﬁﬁﬁz-F/cOn il 2},

where cg is defined as

co = |c| + |_£[ )
Choose k= || f||.qs if f is not identically zero. Otherwise choose arbitrary k > 0

and eventually let £ — O+. By assumption we have
lcollee < A+1.

8

Set w = ui,;, . Note
|Dw|* < (1+ B){Bil)| Dii|* + i, | Dii|*} .

Therefore we have

/lle"‘nz < C{(1+ﬂ)/w2anI2+(1 +ﬂ)/60w2n2},
or |

| /ID(wn)I2 < C{(l+ﬁ)/wlen|2+(1+ﬁ)/cow2n2}.

Holder inequality implies
2 3 2 1_%
(/(nw)ﬁ) <(A+1) (/(nw)«*ﬂ) .

)

Q=



By interpolation inequality and Sobolev inequality with 2* = l_f‘—z— > q—sz--> 2 if

n
q > n/2, we have
Inwll 29 < ellnwllp + Cn, g)e > Inwll 2
La-

< e|D(qw) |12 + C(n, @) 5 ]| 2

for any small ¢ > 0. Therefore we obtain
29
/lD(wn)l2 < C{(l+ﬁ)/w2|Dn|2+(1+ﬁ)2q~"/wznz}
and in particular

le(mes c<1+ﬁ>“/<|Dn|2+n2)w2,

where « in a positive number depending only on n and g. Sobolev inequality then
implies '

(f Ian2X>X <ca +ﬁ)“/(IDnI2+n2)w2

where x = -%5 > 1forn > 2 and x > 2 for n = 2. Choose the cut-off function

as follows. For any 0 < r < R < 1 setn € C}(Bg) with the property

2
n=1inB, and |Dn| < R

Then we obtain

YA+ p
/wzx SC———(R_r)szz.

B, Bgr

Recalling the definition of w, we have

x
/ﬁZXﬁgx < CQ__*__’[):)_/ﬁzﬁﬂ_
(R —r)? "
B, BR

Sety =8+2 'Z 2. Then we obtain

s |
- (y — D* / _
Y X < (C——_ Y
/”’" =" ®-m2 )"
B, Bgr

provided the integral in the right-hand side is bounded. By letting m — 400 we
conclude that

(y — D*

1
Y
Nl Lvxes,) < (Cm> W&l Ly (B )

+5
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provided ||i|| Ly (ry < +00, where C = C(n, g, A, A) is a positive constant inde-
pendent of y. The above estimate suggests that we iterate, beginning with y = 2,
as2,2x,2x? .... Nowsetfori =0,1,2,...,
. 1 1
)/i:2Xl and 7"125-{—5;{_—1‘

By v; = x¥i—1 and r;_, — r; = 1/2'*!, we have fori = 1,2, ...,

léllns,) < C, g, A, A i)l i1 s,

provided ||&|| ri-1¢ qu)‘ < +o00. Hence by iteration we obtain

o o .
Nl s,y = C7 x Nlitllz2eay) 5
in particular
1
7 2

/ x| <c / ii?
By B
Letting i — 400 we get

supi < Cllull2p,y or sup ut < C{l|u+”L2(Bl) + k}.
Bi/2 Bi,2

Recall the definition of k. This finishes the proof for p = 2.
REMARK 4.2. If the subsolution u is bounded, we may simply take the test
function '
¢ = n* @+ — kPt e Hy(B)
for some B8 > 0 and some nonnegative function n € Cé(Bl).

Next we discuss the general p case of Theorem 4.1. This is based on a dilation
argument.
Take any R < 1. Define
u(y) =u(Ry) forye B;.

It-is easy to see that & satisfies the following equation

/&ijDiﬁnga + cup < / fo forany ¢ e HOI(BI) and ¢ > 0in B
B B
where
a(y) =a(Ry), &) = R’(Ry) and f(») =R*f(Ry)
for any y € B;. Direct calculation shows

i - a1
laij|rooBy + I La) = laijlrory + R 4lcllLar < A

We may apply what we just proved to & in B; and rewrite the result in terms of u.
Hence we obtain for p > 2 ) '

+
supu’ < C{Rn/p

a_n
1 oo + RS nfqu(BR)}
BRrs2
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where C = C(n, A, A, p, g) is a positive constant. .-
The estimate in By can be obtained by applying the above result to Ba—eyr(y)
for any y € Byg. Take R = 1. This is Theorem 4.1 forany 0 € (0,1) and p = 2.
Now we prove the statement for p € (0, 2). We showed that for any 8 € (0, 1)
and 0 < R < 1 there holds

+ Zee
Nlut || LooBomy < C { Nu"ll 28 + R 4 ”f”Lq(BR)}

[(1 —6)R]?

1 +
<C {m“u | 2Ry + ”f“L‘I(Bx)} :

For p € (0, 2) we have
[y = i, [y ]
Bpr BR

and hence by Holder inequality

1

2

1 ] e
1™\l oot /(”+)pdx + 1 f llLacar)
Br

[(1 —6)R]?

Nt || zooBor) < C

1 1
/ @ |+ 1 e
BR

< =|lut Loy + C n
2 e [(1 — )R]

Set £(#) = |lut || oy fort € (0,1]. Thenforany 0 <7 < R <1
1 C
fr) < =fR) + ——lullzesy + CllSf Loy -
2 (R—7)F
We apply the following lemma to get for any 0 < r < R <1
c
f(r) < ——utllLey + Cllifllay -
(R—1)% P(B1) 2(B1)
Let R — 1—. We obtain forany 6 < 1

C
Nt || Loo(By) < ———(1 Py Nueepy + ClfllLaay) -
p

]

We need the following simple lemma:

LEMMA 4.3. Let f(t) > 0 be bounded in [7o, 1:1]» with tg > 0. Suppose for
0 <t <s <71 wehave

f® 206+

for some 6 € [0, 1). Then forany 1o <t <§ =T there holds

1) = c@0) 2+ 5.

Sl 05k + A utBE 0

A
(99%) + @)ﬂ?ﬁ
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PROOFE. Fix g <t < ‘5 7y. Forsome 0 < 7 < 1 we consider the sequence
{t;} defined by | ' t - ——(‘ -—"C)T,(f ~})
to=t and fip1 =0+ (1—1)T'(s — 1)

Note feo = i, By iteration 6y
A Lo
F@) = flt) < 0%F )+ [—(—1-—;7)7;@ — 7+ B] S el
i=0

Choose T < 1 such that t7% < 1, thatis, 8 < t* < 1. Ask — oo we have

f@ = C(d, ) {a—?—%—);(s — )7 + B} .
| | O

‘In the rest of this section we use Moser’s iteration to prove a high integrability
result, which is closely related to Theorem 4.1. For the next result we require

n > 3.

THEOREM 4.4. Suppose a;; € L>®(By) andc € L"%(B,) satisfy the following
assumption.

MEPR < aiy (0)&& < Alg[P foranyx € By, & €R”

for some positive constants A and A. Suppose that u € H L(B)) is a subsolution in
the following sense:

/aijDiuDj§0+Cu§0 S/fgo for any ¢ € Hy(B1) and ¢ = 0in By

By
Iff e Li(B,) for some q € [25,%), then u™ € LL (B) for 31,; = -;- ~ 2
Movreover, there holds
| pa* 5y, < C{“u+||L2(31) = ”fHLq(Bl)}
where C = C(n, A, A, g, e(K)) is a positive constant with }":{‘»
(\o’
cary={ [ el
{le|>K}

PROOF. Form > 0, setz = u™ and
- u ifu<m
Ump = ;
T m ifu>m.
Then set the test function

o = n*al i € Hy(By)
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for some B > 0 and some nonnegative function 7 € C (B}). By similar calcula-
tions as in the proof of Theorem 4.1 we conclude

1
(/nuagxw)* < c<1+ﬂ>{/anlzﬁﬁa2+/lcln2ﬁf,ﬁ2+/lf!nzﬁfiﬁ}

n

where x = -—3 > 1. Holder inequality implies for any K > 0

/Icln uﬂu2<K / n® umu + / lclnzﬁﬁﬁz

{le|=K} {lc|>K}
2 .
n n—2
sK/n2a£a2+ / lc|2 (/(nzﬁﬁﬁzw—ff)
{lc|>K}

X
< K/n?-ﬁ,ﬁﬁz+e(K)(fn2Xa,§XaZX>

Note e(K) — 0 as K — 400 since ¢ € L™?%(B)). Hence for bounded B we obtam
by choosing large K = K (8)

(/ X 2><)Y <C+p) {/(IDnlz+n2)ﬁ,’iﬁ2+/Iflnz_ﬁ,ﬁﬁ}-

Observe | (P/*Z)_Zf

uf i gﬁﬁ_ﬁ‘%ﬁ”ﬂﬁz @bt P @
Therefore by Holder inequality again we have forn < 1 (, Q‘* 1)
' B+
(E?Z‘i 8
[t s ([ lfl") (/(n ity )" fsupp b
n
& ¥ ("«t(%’%) uz%%’ B
se(fnZXuXuﬂX) T CCe. ﬁ)(/lfl") C e S
L £
provided : e C*’
1 1 B+1
| g B+2)x —
which is equivalent to
’ -2
pr2<2=2
n—2q

Hence 8 is required to be bounded, depending only on n and g. Then we obtain

1
X
(/ n“ﬁﬁXﬁ“) < C{/(IDnl2+n Yah i 2+nfu'-“+2}.

By setting y = B + 2, we have by definition of q*

(4.5) zsyfwsz_,

n—2q X



78 4. WEAK SOLUTIONS, PART 1I

We conclude, as before, for any such y in (4.5)andany 0 <r <.R <1 -

(4.6) Nl xr sy < C y —— lallersp) + ”f”Lq(Bl)}
(R—r)v _
provided |||l Ly 5y < -+00. Again this suggests the iteration 2, 2, 2x2%, ...,

For given g € [nz—i—”2’ %), there exists a positive integer k such that .

e (n —2) | .
2l <« EETZ oyt Cx.
X =TTy * X,\«" 'XM?
Hence for such k& we get by finitely many iterations of (4.6)

_ _ 2
Nl oak (g, 0y < c{nunuwl) - IIfHLq(Bl)} ¢ B
< -

o - 20" iy
in particular _a*

llall ¢ < C{||L7||L2(Bl)+||f||Lq(Bl)}- %

L X (B3ya)
While with y = ‘-fx— in (4.6) we obtain
Nl Lax (B, = C{”a”f;(&m) + ”f”Lq(Bl)} ,

This finishes the proof. ' ]

4.3. Holder Continuity

We first discuss homogeneous equations with no lower-order terms. Consider
_ Lu = —D;(a;j(x)Dju) in B1(0) C R"
where a;; € L°°(B,) satisfies
ME? < aj(x)&E:& < AlE|* forallx € B(0) and § € R”
for some positive constants A and A.
DEFINITION 4.5. The function u € HILC(Bl) is called a subsolutioﬁ (superso-
lution) of the equation
Lu=0
if
/aij D;uDjp < 0(= 0)
B
for all ¢ € H()I(Bi) and ¢ > 0.

LEMMA 4.6. Let ® € Cloo’c1 (R) be convex. Then
(i) if u is a subsolution and ®' > 0, then v = P (u) is also a subsolution
provided v € H,. (By).

(i) if u is a supersolution and ®' < 0, then v = P (u) is a subsolution provided
v E Hl(l)c(Bl).



