MATH 516-101, 2018-2019 Homework Five Due Date: November 30, 2018

1. Let $u \in H^1(\mathbb{R}^n)$ have compact support and be a weak solution of the semilinear PDE

$$-\Delta u + u^3 = f \text{ in } R^n$$

where $f \in L^2$. Prove that $u \in H^2(\mathbb{R}^n)$.

Hint: mimic the proof of H^2 -estimates but without the cut-off function.

2. Let u be a weak sub-solution of

$$-\sum_{i,j} \partial_{x_j} (a^{ij} \partial_{x_i} u) + c(x)u = f$$

where $\theta \leq (a^{ij}) \leq C_2 < +\infty$. Suppose that $c(x) \in L^{\frac{n}{2}}(B_1), f \in L^q(B_1)$ where $q > \frac{n}{2}$. Show that there exists a generic constant $\epsilon_0 > 0$ such that if $\int_{B_1} |c|^{\frac{n}{2}} dx \leq \epsilon_0$, then

$$\sup_{B_{1/2}} u^+ \le C(\|u^+\|_{L^2(B_1)} + \|f\|_{L^q(B_1)})$$

Hint: following the Moser's iteration procedure.

3. Show that $u = \log |x|$ is in $H^1(B_1)$, where $B_1 = B_1(0) \subset \mathbb{R}^3$ and that it is a weak solution of

$$-\Delta u + c(x)u = 0$$

for some $c(x) \in L^{\frac{3}{2}}(B_1)$ but u is not bounded.

4. Let $u \in H_0^1(\Omega)$ be a weak solution of

$$-\Delta u = |u|^{q-1}u$$
 in Ω ; $u = 0$ on $\partial\Omega$

where $q < \frac{n+2}{n-2}$. Without using Moser's iteration Lemma, use the $W^{2,p}-$ theory only to show that $u \in L^{\infty}$. 5. Let u be a smooth solution of $Lu = -\sum_{i,j} a^{ij} u_{x_i x_j} = 0$ in U and a^{ij} are C^1 and uniformly elliptic. Set v :=

 $|Du|^2 + \lambda u^2$. Show that

$$Lv \leq 0$$
 in U , if λ is large enough

Deduce, by Maximum Principle that

$$||Du||_{L^{\infty}(U)} \le C||Du||_{L^{\infty}(\partial\Omega)} + C||u||_{L^{\infty}(\partial\Omega)}$$

6. Let u be a smooth function satisfying

$$-\Delta u + V(x)u = f(x), |u| \le 1, \text{ in } R^n$$

where

$$|f(x)| \le Ce^{-|x|}$$

and

$$V(x) \ge 2$$
 for $|x| > 1$

Deduce from maximum principle that u actually decays

$$|u(x)| \le Ce^{-|x|}$$