## MATH 516-101, 2018-2019 Homework Five Due Date: November 30, 2018

1. Let $u \in H^{1}\left(R^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
-\Delta u+u^{3}=f \text { in } R^{n}
$$

where $f \in L^{2}$. Prove that $u \in H^{2}\left(R^{n}\right)$.
Hint: mimic the proof of $H^{2}$-estimates but without the cut-off function.
2. Let $u$ be a weak sub-solution of

$$
-\sum_{i, j} \partial_{x_{j}}\left(a^{i j} \partial_{x_{i}} u\right)+c(x) u=f
$$

where $\theta \leq\left(a^{i j}\right) \leq C_{2}<+\infty$. Suppose that $c(x) \in L^{\frac{n}{2}}\left(B_{1}\right), f \in L^{q}\left(B_{1}\right)$ where $q>\frac{n}{2}$. Show that there exists a generic constant $\epsilon_{0}>0$ such that if $\int_{B_{1}}|c|^{\frac{n}{2}} d x \leq \epsilon_{0}$, then

$$
\sup _{B_{1 / 2}} u^{+} \leq C\left(\left\|u^{+}\right\|_{L^{2}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Hint: following the Moser's iteration procedure.
3. Show that $u=\log |x|$ is in $H^{1}\left(B_{1}\right)$, where $B_{1}=B_{1}(0) \subset R^{3}$ and that it is a weak solution of

$$
-\Delta u+c(x) u=0
$$

for some $c(x) \in L^{\frac{3}{2}}\left(B_{1}\right)$ but $u$ is not bounded.
4. Let $u \in H_{0}^{1}(\Omega)$ be a weak solution of

$$
-\Delta u=|u|^{q-1} u \text { in } \Omega ; u=0 \text { on } \partial \Omega
$$

where $q<\frac{n+2}{n-2}$. Without using Moser's iteration Lemma, use the $W^{2, p}-$ theory only to show that $u \in L^{\infty}$.
5. Let $u$ be a smooth solution of $L u=-\sum_{i, j} a^{i j} u_{x_{i} x_{j}}=0$ in $U$ and $a^{i j}$ are $C^{1}$ and uniformly elliptic. Set $v:=$ $|D u|^{2}+\lambda u^{2}$. Show that

$$
L v \leq 0 \text { in } U, \quad \text { if } \lambda \text { is large enough }
$$

Deduce, by Maximum Principle that

$$
\|D u\|_{L^{\infty}(U)} \leq C\|D u\|_{L^{\infty}(\partial \Omega)}+C\|u\|_{L^{\infty}(\partial \Omega)}
$$

6. Let $u$ be a smooth function satisfying

$$
-\Delta u+V(x) u=f(x),|u| \leq 1, \quad \text { in } R^{n}
$$

where

$$
|f(x)| \leq C e^{-|x|}
$$

and

$$
V(x) \geq 2 \text { for }|x|>1
$$

Deduce from maximum principle that $u$ actually decays

$$
|u(x)| \leq C e^{-|x|}
$$

