MATH 516-101 2018-2019 Homework THREE Due Date: by 5pm, October 26, 2018

1. Consider the following function

$$u(x) = \frac{1}{|x|^{\gamma}}$$

in $\Omega = B_1(0)$. Show that if $\gamma + 1 < n$, the weak derivatives are given by

$$\partial_j u = -\gamma \frac{x_j}{|x|^{\gamma+2}}$$

i.e., you need to show rigorously that

$$\int u\partial_j\phi = \int \phi\gamma \frac{x_j}{|x|^{\gamma+2}}$$

For the condition on γ such that $u \in W^{1,p}$ or $u \in W^{2,p}$.

2. Find the weak derive for the following function $u: R \to R$, if exists:

(a)
$$u(x) = \begin{cases} 1 - |x|, \text{ for } |x| \le 1\\ 0, \text{ for } |x| > 1 \end{cases}$$
 (b) $u(x) = \begin{cases} 1, \text{ for } x = 0\\ 0, \text{ for } x \ne 0, \end{cases}$ (c) $u(x) = \begin{cases} 1, \text{ for } |x| \le 1\\ 0, \text{ for } |x| > 1 \end{cases}$

3. Let $\eta(t) = 1$ for $t \leq 0$ and $\eta(t) = 0$ for t > 1. Let $f \in W^{k,p}(\mathbb{R}^n)$ and $f_k = f\eta(|x| - k)$. Show that $||f_k - f||_{W^{k,p}} \to 0$ as $k \to +\infty$. As a consequence show that $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$.

4. Let $u \in C^{\infty}(\bar{R}^n_+)$. Extend u to Eu on R^n such that

$$Eu = u, x \in \mathbb{R}^n_+; Eu \in \mathbb{C}^{3,1}(\mathbb{R}^n) \cap W^{4,p}(\mathbb{R}^n); \|Eu\|_{W^{4,p}} \le \|u\|_{W^{4,p}}$$

Here $R_{+}^{n} = \{(x', x_{n}); x_{n} > 0\}$ and $C^{3,1} = \{u \in C^{3}, D^{\alpha}u \text{ is Lipschitz}, |\alpha| = 3\}.$

5. (a) If n = 1 and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If n > 1, find an example of $u \in W^{1,n}(B_1)$ and $u \notin L^{\infty}$.

6. Prove the following Poincare type inequality: Suppose that $\Omega \subset \{a < x_1 < b\}$. Then for $u \in W_0^{1,2}(\Omega)$ it holds that

$$||u||_{L^{2}(\Omega)} \leq 2(b-a)||\partial_{x_{1}}u||_{L^{2}(\Omega)}$$

7. Suppose $u: (a, b) \to R$ and the weak derivative exists and satisfies

$$Du = 0$$
 a.e. in (a, b)

Prove that u is constant a.e. in (a, b).