1. Consider the following function

$$
u(x)=\frac{1}{|x|^{\gamma}}
$$

in $\Omega=B_{1}(0)$. Show that if $\gamma+1<n$, the weak derivatives are given by

$$
\partial_{j} u=-\gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

i.e., you need to show rigorously that

$$
\int u \partial_{j} \phi=\int \phi \gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

For the condition on γ such that $u \in W^{1, p}$ or $u \in W^{2, p}$.
2. Find the weak derive for the following function $u: R \rightarrow R$, if exists:
(a) $u(x)=\left\{\begin{array}{l}1-|x|, \text { for }|x| \leq 1 \\ 0, \text { for }|x|>1\end{array}\right.$
(b) $u(x)=\left\{\begin{array}{l}1, \text { for } x=0 \\ 0, \text { for } x \neq 0,\end{array}\right.$
(c) $\quad u(x)=\left\{\begin{array}{l}1, \text { for }|x| \leq 1 \\ 0, \text { for }|x|>1\end{array}\right.$
3. Let $\eta(t)=1$ for $t \leq 0$ and $\eta(t)=0$ for $t>1$. Let $f \in W^{k, p}\left(R^{n}\right)$ and $f_{k}=f \eta(|x|-k)$. Show that $\left\|f_{k}-f\right\|_{W^{k, p}} \rightarrow 0$ as $k \rightarrow+\infty$. As a consequence show that $W^{k, p}\left(R^{n}\right)=W_{0}^{k, p}\left(R^{n}\right)$.
4. Let $u \in C^{\infty}\left(\bar{R}_{+}^{n}\right)$. Extend u to $E u$ on R^{n} such that

$$
E u=u, x \in R_{+}^{n} ; E u \in C^{3,1}\left(R^{n}\right) \cap W^{4, p}\left(R^{n}\right) ;\|E u\|_{W^{4, p}} \leq\|u\|_{W^{4, p}}
$$

Here $R_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$ and $C^{3,1}=\left\{u \in C^{3}, D^{\alpha} u\right.$ is Lipschitz, $\left.|\alpha|=3\right\}$.
5. (a) If $n=1$ and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If $n>1$, find an example of $u \in W^{1, n}\left(B_{1}\right)$ and $u \notin L^{\infty}$.
6. Prove the following Poincare type inequality: Suppose that $\Omega \subset\left\{a<x_{1}<b\right\}$. Then for $u \in W_{0}^{1,2}(\Omega)$ it holds that

$$
\|u\|_{L^{2}(\Omega)} \leq 2(b-a)\left\|\partial_{x_{1}} u\right\|_{L^{2}(\Omega)}
$$

7. Suppose $u:(a, b) \rightarrow R$ and the weak derivative exists and satisfies

$$
D u=0 \text { a.e. in }(a, b)
$$

Prove that u is constant a.e. in (a, b).

