MATH400-101, 2018-2019 Homework Assignment 6 (Due Date: by 6pm of November 20 or by 9am Nov. $21,2018)$

1. (30pts) Put the following two problems in standard Sturm-Liouville form, identify the weight function $w(x)$, and calculate the eigenvalues and eigenfunctions. (You can use Bessel function of order zero $J_{0}(r): J_{0}^{\prime \prime}+\frac{1}{r} J_{0}^{\prime}+J_{0}=0, J(0)=$ 1.) Write down the general formula for the expansion of a general function $f(x)$ in terms of the eigenfunctions.

$$
\text { (a) } x^{2} X^{\prime \prime}+3 x X^{\prime}+\lambda X=0,1<x<2, \quad X(1)=0, \quad X(2)=0
$$

(b) $X^{\prime \prime}-2 X^{\prime}+\lambda X=0,0<x<1 ; \quad X(0)=0, \quad X(1)=0 ;$
(c) $X^{\prime \prime}+\frac{1}{x} X^{\prime}+\lambda X=0,0<x<1, X^{\prime}(1)+X(1)=0$
2. (10pts) Solve the following diffusion equation

$$
\left\{\begin{array}{l}
u_{t}=x^{2} u_{x x}+3 x u_{x}, 1<x<2 \\
u(x, 0)=1, \\
u(1, t)=u(2, t)=0
\end{array}\right.
$$

You are allowed to use results in Problem 1.
3 . (10pts) Solve the following wave equation

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}-2 u_{x}, 0<x<1 \\
u(x, 0)=x, u_{t}(x, 0)=0 \\
u(0, t)=u(1, t)=0
\end{array}\right.
$$

You are allowed to use results in Problem 1.
4. (10pts) Solve the following wave equation

$$
\left\{\begin{array}{l}
u_{t}=u_{r r}+\frac{1}{r} u_{r} 0<r<1 \\
u(r, 0)=r^{2} \\
u_{r}(0, t)=0, u_{r}(1, t)+u(1, t)=0
\end{array}\right.
$$

You are allowed to use results in Problem 1. Write your solution in terms of Bessel function of order zero J_{0}.
5 . 20 pts) Use the method of separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}+e^{t} \sin (2 x), 0<x<\pi \\
u(x, 0)=\sin (3 x) \\
u(0, t)=t, u(\pi, t)=0
\end{array}\right.
$$

6 . 20 pts) Use the method of separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}+e^{-t} \sin (3 x), 0<x<\pi \\
u(x, 0)=\sin (x), u_{t}(x, 0)=0 \\
u(0, t)=1, u(\pi, t)=0
\end{array}\right.
$$

7.(20pts) (a) Use the method of separation of variables to solve

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0,0<x<\pi, 0<y<\pi \\
u(0, y)=u_{x}(\pi, y)=u(x, 0)=0 \\
u(x, \pi)=\sin \frac{x}{2}-2 \sin \frac{3 x}{2}
\end{array}\right.
$$

(b) Use divergence theorem to show the solutions to (a) are unique.
8. (10pts) Solve

$$
u_{x x}+u_{y y}+u_{z z}=1
$$

in the spherical shell $1<r<2$ with the boundary condition $\frac{\partial u}{\partial r}=1$ on $r=1$ and $u=1$ on $r=2$. Use the divergence theorem to verify your solution.

Hint: First solve it in radial coordinate $u_{x x}+u_{y y}+u_{z z}=u_{r r}+\frac{2}{r} u_{r}$. Then show the uniqueness.

