SOLUTION TO MATH 256 ASSIGNMENT 1

- Full mark: 80.
- Warning: When f is a trig function, say $\cos (\pi x)$, the Fourier coefficient must be dealt with separately, in this case a_{1}. This is a common mistake in Q7.
(1) (a) As before, $y=y_{h}+y_{p}=C_{1} \cos (\sqrt{2} x)+C_{2} \sin (\sqrt{2} x)+\sin x$. Boundary conditions implies $C_{1}=C_{2}=0$, so $y=\sin x$.
(b) Here $y_{h}=C_{1} \cos x+C_{2} \sin x$. Let $y_{p}=x(A \cos x+B \sin x)$ and plugging in we have $y_{p}^{\prime \prime}+y_{p}=2(-A \sin x+$ $B \cos x)$. So $A=-\frac{1}{2}, B=0, y=C_{1} \cos x+C_{2} \sin x-\frac{1}{2} x \cos x$. From $y(0)=0, C_{1}=0$. However, from $y(\pi)=0$, we get $\frac{\pi}{2}=0$, which is impossible. Therefore this problem has no solution.

Alternatively, you can multiply both sides of the equation by $\sin x$ and integrate from 0 to π. You will get a contradiction because $\int_{0}^{\pi} \sin ^{2} x d x \neq 0$.
(c) As in (b), $y_{h}=C_{1} \cos x+C_{2} \sin x$. Try $y_{p}=x(A \cos x+B \sin x)+C$ to get $y_{p}=-\frac{1}{2} x \cos x-\frac{1}{2}$. Then, from $y(0)=0, C_{1}=0$. But $y=C_{2} \sin x-\frac{1}{2} x \cos x-\frac{1}{2}$ is not consistent with $y(\pi)=0$. So this problem has no solution.
(d) As in (b), $y_{h}=C_{1} \cos x+C_{2} \sin x$ and $y_{p}=x(A \cos x+B \sin x)$. This time we get $A=0$ and $B=\frac{1}{2}$, so $y=C_{1} \cos x+C_{2} \sin x+\frac{1}{2} x \sin x$. Now $y(0)=0$ implies $C_{1}=0$ and we see that $y(\pi)=0$ is automatically satisfied. Therefore we have a family of solutions $y=C_{2} \sin x+\frac{1}{2} x \sin x$.
(2) (a) We compute $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{0} x d x=-\frac{\pi}{4}, a_{k}=\frac{1}{\pi} \int_{-\pi}^{0} x \cos k x d x=\frac{1}{\pi}\left[x \cdot \frac{\sin k x}{k}-1 \cdot \frac{-\cos k x}{k^{2}}\right]_{-\pi}^{0}=\frac{1}{\pi} \frac{1-(-1)^{k}}{k^{2}}$, and $b_{k}=\frac{1}{\pi} \int_{-\pi}^{0} x \sin k x d x=\frac{(-1)^{k}}{k}$. So

$$
f(x) \sim-\frac{\pi}{4}+\sum_{k=1}^{\infty}\left(\frac{1-(-1)^{k}}{k \pi} \cos k x+\frac{(-1)^{k}}{k} \sin k x\right) .
$$

(b) Similarly, using $a_{0}=\frac{1}{2} \int_{-1}^{1} f(x) d x$ and $a_{j}=\int_{-1}^{1} f(x) \cos (k \pi x) d x$ etc. we have

$$
f(x) \sim \frac{2}{3}+\sum_{k=1}^{\infty}\left(\frac{2(-1)^{k}}{k^{2} \pi^{2}} \cos k \pi x+\left(\frac{1-2(-1)^{k}}{k \pi}-\frac{1-(-1)^{k}}{k^{3} \pi^{3}}\right) \sin k \pi x\right) .
$$

(c) We can combine the x integrals which is odd: $a_{0}=\frac{1}{4}\left(\int_{-2}^{2} x d x+\int_{0}^{2} d x\right)=\frac{1}{2}, a_{k}=\frac{1}{2} \int_{-2}^{2} x \cos \frac{k \pi x}{2} d x+$ $\int_{0}^{2} \cos \frac{k \pi x}{2} d x=0, b_{k}$ is computed as usual. These yield

$$
f(x) \sim \frac{1}{2}+\sum_{k=1}^{\infty} \frac{2\left(1-9(-1)^{k}\right)}{k \pi} \sin \frac{k \pi x}{2} .
$$

(3) (1)(a) $a_{0}=\int_{0}^{1} \sin \pi x d x=\frac{2}{\pi}, a_{1}=0$ by orthogonality, for $k \geq 2$ using product-to-sum we have

$$
f(x) \sim \frac{2}{\pi}+\sum_{k=2}^{\infty} \frac{1-(-1)^{k+1}}{\pi}\left(\frac{1}{k+1}-\frac{1}{k-1}\right) \cos k \pi x .
$$

(1)(b) Since sine is odd the odd extension has Fourier series

$$
f(x) \sim \sin \pi x
$$

(2)(a) Again cosine is even so the even extension has Fourier series

$$
\frac{f(x) \sim \cos \pi x}{1}
$$

$(2)(\mathrm{b}) b_{k}$ is computed similarly as the a_{k} in (1)(a). Hence

$$
f(x) \sim \sum_{k=2}^{\infty} \frac{1-(-1)^{k+1}}{\pi}\left(\frac{1}{k+1}+\frac{1}{k-1}\right) \sin k \pi x
$$

(3)(a) By direct computations

$$
f(x) \sim \frac{3}{2}+\sum_{k=1}^{\infty} \frac{-2\left(1-(-1)^{k}\right)}{k^{2} \pi^{2}} \cos k \pi x
$$

(3)(b)

$$
f(x) \sim \sum_{k=1}^{\infty} \frac{2\left(1-2(-1)^{k}\right)}{k \pi} \sin k \pi x
$$

(4) (a) Direct computations yield $a_{0}=\frac{1}{2}, a_{1}=\frac{2}{\pi^{2}}, b_{1}=\frac{3}{\pi}$.
(b) Denote the Fourier series of $f(x)$ by $S f(x)$. Then we have
$S f\left(-\frac{1}{2}\right)=-\frac{1}{2}, S f(0)=\frac{1}{2}(0+1)=\frac{1}{2}, S f\left(\frac{1}{2}\right)=1$.
(5) Let $u(x, t)=X(x) T(t)$. Then from $\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{2 T}=-\lambda^{2}$ we first have $X^{\prime \prime}+\lambda^{2} X=0, X(0)=X\left(\frac{\pi}{2}\right)=0 \Rightarrow$ $X=\sin 2 k x, \lambda=2 k$, as well as $T^{\prime}+2 \lambda^{2} T=0 \Rightarrow T=C e^{-8 k^{2} t}$. Now a superposition $u=\sum_{k=1}^{\infty} C_{k} \sin (2 k x) e^{-8 k^{2} t}$ matches the initial condition by $C_{1}=1, C_{4}=4, C_{k}=0$ otherwise. Hence

$$
u(x, t)=\sin (2 x) e^{-8 t}+4 \sin (8 x) e^{-128 t}
$$

(6) We consider a function w linear in x such that $w(0)=1$ and $w(\pi)=-1$, i.e. $w(x)=1-\frac{2}{\pi} x$. Then $u=v+w$, where v satisfies $v_{t}=2 v_{x x}, v(x, 0)=0, v(0, t)=0, v(\pi, t)=0$ for $0<x<\pi$ and $t>0$. Let $v(x, t)=X(x) T(t)$. Then $X=\sin (k x), T=C e^{-2 k^{2} t}, v=\sum_{k=1}^{\infty} C_{k} \sin (k x) e^{-2 k^{2} t}$. The initial condition implies $C_{k}=0$ for all k, i.e. $v=0$. So $u(x, t)=1-\frac{2}{\pi} x$. As $t \rightarrow+\infty, u$ stays the same as $1-\frac{2}{\pi} x$.
(7) Put $u(x, t)=X(x) T(t)$. Then X solves the Neumann problem on $(0, \pi)$, i.e. the eigenvalues are $k=0,1, \ldots$ and $X=\cos (k x)$. Then the superposition gives

$$
u(x, t)=A_{0}+B_{0} t+\sum_{k=1}^{\infty} \cos (k x)\left(A_{k} \cos (k t)+B_{k} \sin (k t)\right)
$$

When $t=0$, we have $A_{2}=1$ and $A_{k}=0$ for any other k. Differentiating and put $t=0$ we have $B_{0}=1$ and $B_{k}=0$ for other k 's. Thus

$$
u(x, t)=t+\cos (2 x) \cos (2 t)
$$

(8) Put $u(x, y)=X(x) Y(y)$. Taking into account the Dirichlet boundary conditions when $x=0$ and $x=1$, we have $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda^{2}$, so $\lambda=k \pi$ and $X=\sin (k \pi x), k=1,2, \ldots$ The Y-equation $Y^{\prime \prime}-(k \pi)^{2} Y=0$ has solution $Y=A \cosh (k \pi y)+B \sinh (k \pi y)$. (Note that this is preferred over $A_{k} e^{k \pi y}+B_{k} e^{-k \pi y}$ because it is simpler when you put $y=0$.) Now the superposition

$$
u(x, y)=\sum_{k=1}^{\infty} \sin (k \pi x)\left(A_{k} \cosh (k \pi y)+B_{k} \sinh (k \pi y)\right)
$$

is to be matched with the boundary conditions on y. On the set $y=0$, we have

$$
\sum_{k=1}^{\infty} A_{k} \sin (k \pi x)=x
$$

As coefficients of a Fourier sine series,

$$
A_{k}=2 \int_{0}^{1} x \sin (k \pi x) d x=2\left[x \frac{-\cos (k \pi x)}{k \pi}-\frac{-\sin (k \pi x)}{k^{2} \pi^{2}}\right]_{0}^{1}=\frac{2(-1)^{k+1}}{k \pi}
$$

Finally we put $y=1$ and require that $A_{k} \cosh (k \pi)+B_{k} \sinh (k \pi)=0$. Our final solution is

$$
u(x, y)=\sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k \pi} \sin (k \pi x)\left(\cosh (k \pi y)-\frac{\cosh (k \pi)}{\sinh (k \pi)} \sinh (k \pi y)\right)
$$

Note: An even better way is to use the solution $Y=A^{\prime} \cosh (k \pi(y-1))+B^{\prime} \sinh (k \pi(y-1))$ instead. When we put $y=1$ we get $A^{\prime}=0$, for any k. In this way the final solution reads:

$$
u(x, y)=\sum_{k=1}^{\infty} \frac{2(-1)^{k}}{k \pi \sinh (k \pi)} \sin (k \pi x) \sinh (k \pi(y-1))
$$

as seen using the corresponding "compound angle formula" for sinh.

