SOLUTION TO MATH 256 ASSIGNMENT 1

- Full mark: 70. 10 points each.
- Warning 1: DO NOT just copy (or, in exams, memorize) a generic phase portrait and put it as your answer, because the principal directions (of the eigenvectors) are not necessarily of that type (see for example Q4(1)).
- Warning 2: A center is neutrally stable, that is, stable (trajectory stays close forever if initial point is near the equilibrium) but not asymptotically stable (tends to the equilibrium as $t \rightarrow+\infty$). NOT undetermined.
- To :(, it is very dangerous not to know linear algebra or complex numbers. Do learn them well!
(1) When no confusion arises, we denote the given matrix by A.
(1) The eigenvalues solves $r^{2}-(5+1) r+(5)(1)-(-1)(3)=0$, i.e. $r^{2}-6 r+8=0$. Then $r=2$ or $r=4$. The kernel of $A-2 I=\left(\begin{array}{ll}3 & -1 \\ 3 & -1\end{array}\right)$ is spanned by $\binom{1}{3}$, and that of $A-4 I=\left(\begin{array}{ll}1 & -1 \\ 3 & -3\end{array}\right)$ by $\binom{1}{1}$. Hence the eigenpairs are given by $r_{1}=2, v_{1}=\binom{1}{3}$ and $r_{2}=2, v_{2}=\binom{1}{1}$. Similarly we have
(2) $r^{2}+1=0, \quad r_{ \pm}= \pm i, A-(\pm i) I=\left(\begin{array}{cc}2 \mp i & -1 \\ 5 & -2 \mp i\end{array}\right), v_{ \pm}=\binom{1}{2 \mp i}$.
(3) The characteristic equation is $-r\left(r^{2}-1\right)-(-r-1)+(1+r)=0$, i.e. $(r+1)^{2}(r-2)=0$.

For the simple eigenvalue $\begin{array}{r}r_{1}=2 \\ , ~\end{array}, A-2 I=\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right)$. Since there is at most one associated

 to $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Its null space is two-dimensional and is spanned by $v_{2,1}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $v_{2,2}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.

Note: Look at the dimension of the eigenspace before computing any eigenvector!
(4) Here the characteristic equation is $(r-2)^{3}=0$, so the only eigenvalue is $r_{1}=2$. Now $A-2 I=$ $\left(\begin{array}{ccc}-1 & 1 & 1 \\ 2 & -1 & -1 \\ -3 & 2 & 2\end{array}\right)$ is reduced by row operations to $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. (Indeed, add a multiple of the first row to the others and use the resulting second row to eliminate the non-zero entries in the first column.) Hence the eigenspace is one-dimensional, spanned by $v_{1}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
Warning: DO NOT write $v_{1}=v_{2}=v_{3}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ because eigenvectors are by definition linearly independent!
(2) (1) $\operatorname{trace}(A)=e^{t}+1-e^{t}=1$. So $W=C e^{t}$.
(2) Since we are considering regular ODE, we are consider subintervals of $(-\infty, 0)$ or $(0,+\infty)$ (excluding
$0!$). A is the coefficient of \mathbf{x} when the left hand side is \mathbf{x}^{\prime}, hence is to be divided by t. So $\operatorname{trace}(A)=\frac{1}{t}$ and $W=C e^{\log |t|}=C t$, the sign according to the absolute value being absorbed by the constant C.
(3) (1) The eigenpairs are $r_{1}=1, v_{1}=\binom{1}{1}$ and $r_{2}=4, v_{2}=\binom{1}{2}$, giving the general solution $\mathbf{x}=C_{1}\binom{1}{1} e^{t}+$ $C_{2}\binom{1}{-2} e^{4 t}$. The initial condition implies $C_{1}=1$ and $C_{2}=0$, so that $\mathbf{x}=\binom{1}{1} e^{t}$.
(2) The eigenpairs are $r_{ \pm}=2 \pm i, v_{ \pm}=\binom{1}{-1 \mp i}$. Using Euler's formula $e^{i t}=\cos t+i \sin t$, we get a complex solution $e^{2 t}(\cos t+i \sin t)\binom{1}{-1-i}=e^{2 t}\left[\binom{\cos t}{-\cos t+\sin t}+i\binom{\sin t}{-\cos t-\sin t}\right]$. The real and imaginary parts gives linearly independent real solutions and so the general solution is $\mathbf{x}=$ $e^{2 t}\left[C_{1}\binom{\cos t}{-\cos t+\sin t}+C_{2}\binom{\sin t}{-\cos t-\sin t}\right]$. By the initial condition, $C_{1}\binom{1}{-1}+C_{2}\binom{0}{-1}=\binom{1}{0}$, so $C_{1}=1, C_{2}=-1$, and $\mathbf{x}=e^{2 t}\left[\binom{\cos t}{-\cos t+\sin t}-\binom{\sin t}{-\cos t-\sin t}\right]=e^{2 t}\binom{\cos t-\sin t}{2 \sin t}$.
(3) The only eigenvalue is $r_{1}=2$ with associated eigenvector $v_{1}=\binom{1}{-1}$. To proceed, we look for a generalized eigenvector given by the equation $\left(A-r_{1} I\right) v_{2}=v_{1}$, i.e. $\left(\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right) v_{2}=\binom{1}{-1}$. An (the) obvious choice is $v_{2}=\binom{-1}{0}$. So the general solution is $\mathbf{x}=e^{2 t}\left[C_{1}\binom{1}{-1}+C_{2}\left(t\binom{1}{-1}+\binom{-1}{0}\right)\right]$. The initial condition implies $C_{1}\binom{1}{-1}+C_{2}\binom{-1}{0}=\binom{0}{1}$, so $C_{1}=C_{2}=-1$ and $\mathbf{x}=e^{2 t}\binom{-t}{t+1}$.
(4) (1) The eigenpairs are $r_{1}=3, v_{1}=\binom{1}{5}$ and $r_{2}=-1, v_{2}=\binom{1}{1}$, giving the general solution $\mathbf{x}=C_{1}\binom{1}{5} e^{3 t}+C_{2}\binom{1}{1} e^{t}$. Since the eigenvalues have opposite signs, the phase portrait is an unstable saddle.
(2) The eigenpairs are $r_{1}=-2, v_{1}=\binom{1}{1}$ and $r_{2}=-4, v_{2}=\binom{1}{-1}$, giving the general solution $\mathbf{x}=C_{1}\binom{1}{1} e^{-2 t}+C_{2}\binom{1}{-1} e^{-4 t}$. Since the eigenvalues are both negative, it's a (proper) stable node.
(3) The eigenpairs are $r_{ \pm}= \pm i$ and $v_{ \pm}=\binom{1}{2 \mp i}$. The general solution is $\mathbf{x}=C_{1}\binom{\cos t}{2 \cos t+\sin t}+C_{2}\binom{\sin t}{-\cos t+2 \sin t}$. Because the eigenvalues are purely imaginary, it is a stable center. To determine the direction, look at specific points. For example, at $\mathbf{x}=\binom{1}{0}$ we have $\mathbf{x}^{\prime}=\binom{2}{1}$ which points up (in the x_{2} component). From this you know that the trajectories go counterclockwise.
(4) The eigenpairs are $r_{ \pm}=-1 \pm i$ and $v_{ \pm}=\binom{2 \pm i}{1}$. The general solution is $\mathbf{x}=C_{1}\binom{2 \cos t-\sin t}{\cos t}+C_{2}\binom{\cos t+2 \sin t}{\sin t}$. Because the eigenvalues have negative real parts, it is a
stable spiral. By the same reasoning as above, trajectories spiral to the origin counter-clockwise.
(5) The only eigenpair is $r_{1}=1$ and $v_{1}=\binom{2}{1}$. An associated eigenvector, which solves $\left(\begin{array}{ll}2 & -4 \\ 1 & -2\end{array}\right) v_{2}=$ $\binom{2}{1}$, is given by $v_{2}=\binom{1}{0}$. The general solution is $\mathbf{x}=e^{t}\left[C_{1}\binom{2}{1}+C_{2}\left(t\binom{2}{1}+\binom{1}{0}\right)\right]$. Since there is a repeated positive eigenvalue, it is an improper unstable node.
(5) These ODEs are of Euler type, i.e. of the form $t \mathbf{x}^{\prime}=A \mathbf{x}$. Using the substitution $\mathbf{x}=\xi t^{r}$ gives the characteristic equation $r \xi t^{r}=A \xi t^{r}$, i.e. the eigenvalue problem $A \xi=r \xi$.
(1) As usual we get the eigenpairs $r_{1}=2, \xi_{1}=\binom{1}{1}$ and $r_{2}=3, \xi_{2}=\binom{1}{2}$. Therefore the general solution is $\mathbf{x}=C_{1}\binom{1}{1} t^{2}+C_{2}\binom{1}{2} t^{3}$.
(2) We have complex eigenvalues $r_{ \pm}=-2 \pm i$ and $\xi_{ \pm}=\binom{1 \mp i}{1}$. Since $t^{i}=e^{i \log t}=\cos (\log t)+i \sin (\log t)$, a complex solution is
$t^{-2}(\cos (\log t)+i \sin (\log t))\binom{1-i}{1}=t^{-2}\left[\binom{\cos (\log t)+\sin (\log t)}{\cos (\log t)}+i\binom{-\cos (\log t)+\sin (\log t)}{\sin (\log t)}\right]$.
Hence, $\mathbf{x}=t^{-2}\left[C_{1}\binom{\cos (\log t)+\sin (\log t)}{\cos (\log t)}+C_{2}\binom{-\cos (\log t)+\sin (\log t)}{\sin (\log t)}\right]$.
(6) We assume that $a \neq 0$, otherwise there is no point putting it in the matrix form. We compute $\mathbf{x}^{\prime}=\binom{y^{\prime}}{y^{\prime \prime}}=$

$$
\binom{y^{\prime}}{-\frac{b}{a} y^{\prime}-\frac{c}{a} y}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{c}{a} & -\frac{b}{a}
\end{array}\right) \mathbf{x}, \text { so } A=\left(\begin{array}{cc}
0 & 1 \\
-\frac{c}{a} & -\frac{b}{a}
\end{array}\right) .
$$

Now the eigenvalues of A satisfy $r\left(r+\frac{b}{a}\right)+\frac{c}{a}=0$, i.e. $a r^{2}+b r+c=0$.
(7) We have $\rho \rho^{\prime}=x_{1}\left(2 x_{1}+x_{2}\right)+x_{2}\left(-x_{1}+2 x_{2}\right)=2 x_{1}^{2}+2 x_{2}^{2}=2 \rho^{2}$ so $\rho^{\prime}=2 \rho$. Also $\rho^{2} \theta^{\prime}=-x_{2}\left(2 x_{1}+\right.$ $\left.x_{2}\right)+x_{1}\left(-x_{1}+2 x_{2}\right)=-x_{1}^{2}-x_{2}^{2}=-\rho^{2}$, i.e. $\theta^{\prime}=-1$. Without solving the equation, we see that as t increases, the angle θ that $\left(x_{1}, x_{2}\right)$ makes with the x_{1}-axis decreases uniformly and and the radius ρ increases proportional to its value. Hence the trajectories spiral out of the origin in the clockwise direction.

Note 1: You are asked to find the equation for ρ^{\prime} and θ^{\prime}, NOT to solve them \ldots (so don't consider them as your final answer)

Note 2: Trajectories don't intersect each other, due to the uniqueness of solutions to ODEs. When drawing a spiral DO NOT draw an intersection at the origin.

