SOLUTION TO MATH 256 ASSIGNMENT 2

- 10 points each.
- (1) (a)(3pts) Characteristic equation $r^2 + 3r 4 = 0 \implies r_1 = 1, r_2 = -4$. Then the general solution is $y = C_1 e^t + C_2 e^{-4t}$. By y(0) = 1 and y'(0) = 0, $C_1 = \frac{1}{5}$ and $C_2 = \frac{4}{5}$. So the solution is $y = \frac{4}{5}e^t + \frac{1}{5}e^{-4t}$. (b)(3pts) Characteristic equation $r^2 + 2r + 2 = 0 \implies r_1 = -1 + i, r_2 = -1 - i$. Then the general solution is $y = e^{-t}(C_1 cost + C_2 sint)$. By y(0) = 1 and y'(0) = 0, $C_1 = C_2 = 1$. So the solution is $y = e^{-t}(cost + sint)$]. (c)(4pts) Characteristic equation $r^2 - 4r + 4 = 0 \implies r_1 = r_2 = 2$. Then the general solution is $y = C_1 e^{2t} + C_2 t e^{2t}$. By y(0) = 1 and y'(0) = 0, $C_1 = 1$ and $C_2 = -2$. So the solution is $y = e^{2t} - 2t e^{2t}$]. (2) We are using Abel $W(x) = W(x_0) e^{-\int_{x_0}^x p(s) ds}$ for this question. (a)(2pts) $W(x) = W(x_0) e^{-\int_{x_0}^x p(s) ds} = W(0) e^{-\int_0^x s ds} \implies W(x) = e^{-\frac{x^2}{2}}$. So $W(1) = e^{-\frac{1}{2}}$. (b)(2pts) First we divide both sides by x^2 . Then $W(x) = W(x_0) e^{-\int_{x_0}^x p(s) ds} = W(4) e^{-\int_x^x \frac{1}{x} ds} \implies W(x) = \frac{8}{x}$. So W(1) = 8. (c)(3pts) First we divide both sides by x. Then $W(x) = W(x_0) e^{-\int_{x_0}^x p(s) ds} = W(2) e^{-\int_x^x \frac{2}{x} ds} \implies W(x) = \frac{12}{x^2}$. So W(1) = 12. (d)(3pts) First we divide both sides by sinx. Then $W(x) = W(x_0) e^{-\int_{x_0}^x p(s) ds} = W(\frac{\pi}{2}) e^{\int_x^x 2} cots ds} \implies W(x) = sin1$.
- (3) (a)(4pts) Yes. It is easy to check that $y_1(x) = x$ and $y_2(x) = x^{-4}$ are solutions to our ODE. Since

$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} x & x^{-4} \\ 1 & -4x^{-5} \end{vmatrix} = -5x^{-4} \neq 0, \text{ for } x > 0,$$

we know that y_1 and y_2 are linearly independent. So they form a fundamental set of solutions. (b)(3pts) No. Directly compute

$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} x & 2x \\ 1 & 2 \end{vmatrix} = 0.$$

So they are linearly dependent.

(c)(3pts) No. Because $y_2(x) = x^{-1}$ is not a solution to the original ODE.

An alternative way is to compute the indicial roots for the Euler-type equation.

(4) (a)(3pts) By Abel, we know that

$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = e^{-\int \frac{2}{s} ds}$$

 $y_1(x) = x \implies y_2$ satisfies $y'_2 - \frac{y_2}{x} = \frac{1}{x^3}$. By integrating factor, we know $y_2(x) = -\frac{1}{3x^2}$ (b)(3pts) By Abel, we know that

$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = e^{\int \frac{s}{s-1} ds}.$$

 $y_1(x) = e^x \implies y_2$ satisfies $y'_2 - y_2 = x - 1$. By integrating factor, we know $y_2(x) = -x$. (c)(4pts) By Abel, we know that

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = e^{\int \frac{s+2}{s} ds}.$$

 $y_1(x) = e^x \implies y_2$ satisfies $y'_2 - y_2 = x^2$. By integrating factor, we know $y_2(x) = -x^2 - 2x - 2$

(5) The homogeneous part for these three ODEs is the same as Q1 (a), so we only need to find a particular solution for each one. One can use the method of variation of parameters to get the general solution for the

(c)(4pts) Try $y_p = axe^x$. Then $5ae^x = 5e^x \implies a = 1$. So the general solution is

$$y = C_1 e^x + C_2 e^{-4x} + x e^x \,.$$

(6) Similar to Q5, we only need to find a particular solution for each inhomogeneous ODE. (a)(3pts) Try $y_p = ae^x$. Then $5ae^x = e^x \implies a = \frac{1}{5}$. So the general solution is

$$y = e^{-x}(C_1 cosx + C_2 sinx) + \frac{1}{5}e^x$$

(b)(3pts) Try $y_p = ae^x + bx$. Then $5ae^x + 2bx + 2b = e^x + x + 1 \implies a = \frac{1}{5}, b = \frac{1}{2}$. So the general solution is

$$y = e^{-x}(C_1 \cos x + C_2 \sin x) + \frac{1}{5}e^x + \frac{1}{2}x$$

(c)(4pts) Try $y_p = e^{-x}(axsinx + bxcosx)$. Direct computation gives

$$-2be^{-x}sinx = e^{-x}sinx$$
 and $2ae^{-x}cosx = 0$.

So a = 0 and $b = -\frac{1}{2}$. The general solution is

$$y = e^{-x}(C_1 cosx + C_2 sinx) - \frac{1}{2}xe^{-x}cosx$$
.

(7) (a)(3pts) Try $y_p = (ax + b)e^x$. Then direct computation gives $(ax - 2a + b)e^x = xe^x$. So a = 1, b = 2. The general solution is

$$y = C_1 e^{2x} + C_2 x e^{2x} + (x+2)e^x$$

(b)(3pts) Try $y_p = acos2x + bsin2x + ccosx + dsinx$. By direct computations, we obtain

$$-8bcos2x + 4asin2x + (3c - 4d)cosx + (3d + 4c)sinx = 4cos2x + 5sinx.$$

So,

$$\begin{cases} -8b = 4 \\ 4a = 0 \\ 3c - 4d = 0 \\ 3d + 4c = 5 \end{cases} \implies \begin{cases} a = 0 \\ b = -\frac{1}{2} \\ c = \frac{4}{5} \\ d = \frac{3}{5} \end{cases}$$

The general solution is

$$y = C_1 e^{2x} + C_2 x e^{2x} - \frac{1}{2} \sin 2x + \frac{4}{5} \cos x + \frac{3}{5} \sin x$$

(c)(4pts) Try $y = ax^2e^{2x}$. Plugging in, we get $2ae^{2x} = e^{2x}$, which implies $a = \frac{1}{2}$. So the general solution is

$$y = C_1 e^{2x} + C_2 x e^{2x} + \frac{1}{2} x^2 e^{2x}$$