- 10 points each.
(1) (a)(3pts) Characteristic equation $r^{2}+3 r-4=0 \Longrightarrow r_{1}=1, r_{2}=-4$. Then the general solution is $y=C_{1} e^{t}+C_{2} e^{-4 t}$. By $y(0)=1$ and $y^{\prime}(0)=0, C_{1}=\frac{1}{5}$ and $C_{2}=\frac{4}{5}$. So the solution is $y=\frac{4}{5} e^{t}+\frac{1}{5} e^{-4 t}$. (b)(3pts) Characteristic equation $r^{2}+2 r+2=0 \Longrightarrow r_{1}=-1+i, r_{2}=-1-i$. Then the general solution is $y=e^{-t}\left(C_{1} \operatorname{cost}+C_{2} \operatorname{sint}\right)$. By $y(0)=1$ and $y^{\prime}(0)=0, C_{1}=C_{2}=1$. So the solution is $y=e^{-t}($ cost $+\sin t)$.
(c)(4pts) Characteristic equation $r^{2}-4 r+4=0 \Longrightarrow r_{1}=r_{2}=2$. Then the general solution is $y=C_{1} e^{2 t}+C_{2} t e^{2 t}$. By $y(0)=1$ and $y^{\prime}(0)=0, C_{1}=1$ and $C_{2}=-2$. So the solution is $y=e^{2 t}-2 t e^{2 t}$.
(2) We are using Abel $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(s) d s}$ for this question.
(a)(2pts) $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(s) d s}=W(0) e^{-\int_{0}^{x} s d s} \Longrightarrow W(x)=e^{-\frac{x^{2}}{2}}$. So $W(1)=e^{-\frac{1}{2}}$.
(b) $\left(2\right.$ pts) First we divide both sides by x^{2}. Then $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(s) d s}=W(4) e^{-\int_{4}^{x} \frac{1}{s} d s} \Longrightarrow$ $W(x)=\frac{8}{x}$. So $W(1)=8$.
(c)(3pts) First we divide both sides by x. Then $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(s) d s}=W(2) e^{-\int_{2}^{x} \frac{2}{s} d s} \Longrightarrow$ $W(x)=\frac{12}{x^{2}}$. So $W(1)=12$.
(d)(3pts) First we divide both sides by $\sin x$. Then $W(x)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(s) d s}=W\left(\frac{\pi}{2}\right) e^{\int_{\frac{\pi}{2}}^{x} \operatorname{cotsds}} \Longrightarrow$ $W(x)=\sin x$. So $W(1)=\sin 1$.
(3) (a)(4pts) Yes. It is easy to check that $y_{1}(x)=x$ and $y_{2}(x)=x^{-4}$ are solutions to our ODE. Since

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & x^{-4} \\
1 & -4 x^{-5}
\end{array}\right|=-5 x^{-4} \neq 0, \text { for } x>0,
$$

we know that y_{1} and y_{2} are linearly independent. So they form a fundamental set of solutions.
(b) (3pts) No. Directly compute

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & 2 x \\
1 & 2
\end{array}\right|=0 .
$$

So they are linearly dependent.
(c)(3pts) No. Because $y_{2}(x)=x^{-1}$ is not a solution to the original ODE.

An alternative way is to compute the indicial roots for the Euler-type equation.
(4) (a)(3pts) By Abel, we know that

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=e^{-\int \frac{2}{s} d s} .
$$

$y_{1}(x)=x \Longrightarrow y_{2}$ satisfies $y_{2}^{\prime}-\frac{y_{2}}{x}=\frac{1}{x^{3}}$. By integrating factor, we know $y_{2}(x)=-\frac{1}{3 x^{2}}$.
(b)(3pts) By Abel, we know that

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=e^{\int \frac{s}{s-1} d s} .
$$

$y_{1}(x)=e^{x} \Longrightarrow y_{2}$ satisfies $y_{2}^{\prime}-y_{2}=x-1$. By integrating factor, we know $y_{2}(x)=-x$.
(c)(4pts) By Abel, we know that

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=e^{\int \frac{s+2}{s} d s} .
$$

$y_{1}(x)=e^{x} \Longrightarrow y_{2}$ satisfies $y_{2}^{\prime}-y_{2}=x^{2}$. By integrating factor, we know $y_{2}(x)=-x^{2}-2 x-2$.
(5) The homogeneous part for these three ODEs is the same as Q1 (a), so we only need to find a particular solution for each one. One can use the method of variation of parameters to get the general solution for the
(c)(4pts) Try $y_{p}=a x e^{x}$. Then $5 a e^{x}=5 e^{x} \Longrightarrow a=1$. So the general solution is

$$
y=C_{1} e^{x}+C_{2} e^{-4 x}+x e^{x} .
$$

(6) Similar to Q5, we only need to find a particular solution for each inhomogeneous ODE.
(a)(3pts) Try $y_{p}=a e^{x}$. Then $5 a e^{x}=e^{x} \Longrightarrow a=\frac{1}{5}$. So the general solution is

$$
y=e^{-x}\left(C_{1} \cos x+C_{2} \sin x\right)+\frac{1}{5} e^{x}
$$

(b)(3pts) Try $y_{p}=a e^{x}+b x$. Then $5 a e^{x}+2 b x+2 b=e^{x}+x+1 \Longrightarrow a=\frac{1}{5}, b=\frac{1}{2}$. So the general solution is

$$
y=e^{-x}\left(C_{1} \cos x+C_{2} \sin x\right)+\frac{1}{5} e^{x}+\frac{1}{2} x .
$$

(c)(4pts) Try $y_{p}=e^{-x}(a x \sin x+b x \cos x)$. Direct computation gives

$$
-2 b e^{-x} \sin x=e^{-x} \sin x \text { and } 2 a e^{-x} \cos x=0
$$

So $a=0$ and $b=-\frac{1}{2}$. The general solution is

$$
y=e^{-x}\left(C_{1} \cos x+C_{2} \sin x\right)-\frac{1}{2} x e^{-x} \cos x .
$$

(7) (a) (3pts) Try $y_{p}=(a x+b) e^{x}$. Then direct computation gives $(a x-2 a+b) e^{x}=x e^{x}$. So $a=1, b=2$. The general solution is

$$
y=C_{1} e^{2 x}+C_{2} x e^{2 x}+(x+2) e^{x} .
$$

(b)(3pts) Try $y_{p}=a \cos 2 x+b \sin 2 x+c \cos x+d \sin x$. By direct computations, we obtain

$$
-8 b \cos 2 x+4 a \sin 2 x+(3 c-4 d) \cos x+(3 d+4 c) \sin x=4 \cos 2 x+5 \sin x
$$

So,

$$
\left\{\begin{array} { l }
{ - 8 b = 4 } \\
{ 4 a = 0 } \\
{ 3 c - 4 d = 0 } \\
{ 3 d + 4 c = 5 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
a=0 \\
b=-\frac{1}{2} \\
c=\frac{4}{5} \\
d=\frac{3}{5}
\end{array}\right.\right.
$$

The general solution is

$$
y=C_{1} e^{2 x}+C_{2} x e^{2 x}-\frac{1}{2} \sin 2 x+\frac{4}{5} \cos x+\frac{3}{5} \sin x .
$$

(c)(4pts) Try $y=a x^{2} e^{2 x}$. Plugging in, we get $2 a e^{2 x}=e^{2 x}$, which implies $a=\frac{1}{2}$. So the general solution is

$$
y=C_{1} e^{2 x}+C_{2} x e^{2 x}+\frac{1}{2} x^{2} e^{2 x}
$$

