MATH 256 Written Assignment 2

You may use Wolfram Alpha to evaluate any integrals.
Otherwise, you must show all your working.

1. Find the solution to each of the following ODEs:
(a) $y^{\prime \prime}+3 y^{\prime}-4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$.
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$.
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$.
2. For the following ODEs, find the value of the Wronksian when $x=1$ given the value of the Wronsian at the value of x given. Do not solve the ODEs.
(a) $y^{\prime \prime}+x y^{\prime}+y=0$ given that the Wronskian is 1 when $x=0$.
(b) $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ given that the Wronskian is 2 when $x=4$.
(c) $x y^{\prime \prime}+2 y^{\prime}+e^{x} y=0$ given that the Wronskian is 3 when $x=2$.
(d) $\sin (x) y^{\prime \prime}-\cos (x) y^{\prime}+\sin (x) y=0$ given that the Wronskian is 1 when $x=\pi / 2$.
3. For the ODE $x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0$, are the provided functions $y_{1}(x)$ and $y_{2}(x)$ a fundamental set of solutions for $x>0$? Either prove that they are, or explain why they are not.
(c) $y_{1}(x)=x$ and $y_{2}(x)=x^{-4}$.
(d) $y_{1}(x)=x$ and $y_{2}(x)=2 x$.
(e) $y_{1}(x)=x$ and $y_{2}(x)=x^{-1}$.
4. For the following ODEs, find a second solution $y_{2}(x)$ given the solution $y_{1}(x)$ provided.
(a) $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$ given $y_{1}(x)=x$.
(b) $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$ given $y_{1}(x)=e^{x}$.
(c) $x y^{\prime \prime}-(x+2) y^{\prime}+2 y=0$ given $y_{1}(x)=e^{x}$.
5. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
(a) $y^{\prime \prime}+3 y^{\prime}-4 y=4 x+1$.
(b) $y^{\prime \prime}+3 y^{\prime}-4 y=10 \cos (2 x)$.
(c) $y^{\prime \prime}+3 y^{\prime}-4 y=5 e^{x}$.
6. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x}$.
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=x+1+e^{x}$.
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-x} \sin (x)$.
7. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{x}$.
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=4 \cos (2 x)+5 \sin (x)$.
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$.
