MATH 256 Written Assignment 2

You may use Wolfram Alpha to evaluate any integrals. Otherwise, you must show all your working.

- 1. Find the solution to each of the following ODEs:
 - (a) y'' + 3y' 4y = 0 with y(0) = 1 and y'(0) = 0.
 - (b) y'' + 2y' + 2y = 0 with y(0) = 1 and y'(0) = 0.
 - (c) y'' 4y' + 4y = 0 with y(0) = 1 and y'(0) = 0.
- 2. For the following ODEs, find the value of the Wronksian when x = 1 given the value of the Wronsian at the value of x given. Do not solve the ODEs.
 - (a) y'' + xy' + y = 0 given that the Wronskian is 1 when x = 0.
 - (b) $x^2y'' + xy' + x^2y = 0$ given that the Wronskian is 2 when x = 4.
 - (c) $xy'' + 2y' + e^x y = 0$ given that the Wronskian is 3 when x = 2.
 - (d) $\sin(x)y'' \cos(x)y' + \sin(x)y = 0$ given that the Wronskian is 1 when $x = \pi/2$.
- 3. For the ODE $x^2y'' + 4xy' 4y = 0$, are the provided functions $y_1(x)$ and $y_2(x)$ a fundamental set of solutions for x > 0? Either prove that they are, or explain why they are not.
 - (c) $y_1(x) = x$ and $y_2(x) = x^{-4}$.
 - (d) $y_1(x) = x$ and $y_2(x) = 2x$.
 - (e) $y_1(x) = x$ and $y_2(x) = x^{-1}$.
- 4. For the following ODEs, find a second solution $y_2(x)$ given the solution $y_1(x)$ provided.
 - (a) $x^2y'' + 2xy' 2y = 0$ given $y_1(x) = x$.
 - (b) (x-1)y'' xy' + y = 0 given $y_1(x) = e^x$.
 - (c) xy'' (x+2)y' + 2y = 0 given $y_1(x) = e^x$.
- 5. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
 - (a) y'' + 3y' 4y = 4x + 1.
 - (b) $y'' + 3y' 4y = 10\cos(2x)$.
 - (c) $y'' + 3y' 4y = 5e^x$.
- 6. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
 - (a) $y'' + 2y' + 2y = e^x$.
 - (b) $y'' + 2y' + 2y = x + 1 + e^x$.
 - (c) $y'' + 2y' + 2y = e^{-x}\sin(x)$.
- 7. Find the general solution to each of the following ODEs. Hint: have a look at Q1.
 - (a) $y'' 4y' + 4y = xe^x$.
 - (b) $y'' 4y' + 4y = 4\cos(2x) + 5\sin(x)$.
 - (c) $y'' 4y' + 4y = e^{2x}$.