- Full mark: 90. 10 points each.
- Warning 1: The constant of integration appears when the integral is evaluated. It has to be carried along, not added anew in the next line (so $\frac{1}{y}=-\cos x+C$ is the same as $y=\frac{1}{-\cos x+C}$ and not $y=\frac{1}{-\cos x}+C$).
- Warning 2: $e^{(1-a) t}$ is not an exponential function when $a=1$. It is a constant 1 and integrates to $t+C$.
- If you see :(, you seem to be at risk of (i) not knowing basic algebra, (ii) not having enough integration skills, (iii) writing nonsense, or (iv) all of the above. This could be a sign of eventually failing the course. Your TA strongly suggests you to catch up by seeking help (office hours, MLC, private tutor, etc.)
(a) $\frac{d v}{d t}=9.8-v \Longrightarrow \frac{d v}{d t}+v=9.8 \Longrightarrow e^{t} \frac{d v}{d t}+e^{t} v=9.8 e^{t} \Longrightarrow\left(e^{t} v\right)^{\prime}=9.8 e^{t} \Longrightarrow e^{t} v=9.8 e^{t}+C \Longrightarrow$ $v=9.8+C e^{-t}$. From $v(0)=0, C=-9.8$ so $v=9.8\left(1-e^{-t}\right)$.
Alternatively, you can separable variables. However, you will need to know how to deal with absolute values and positivity of the constants. See Q3(a).
(b) $\frac{d x}{d t}=9.8\left(1-e^{t}\right), x(0)=0 \Longrightarrow x=9.8 \int_{0}^{t}\left(1-e^{-s}\right) d s \Longrightarrow x=9.8\left(t+e^{-t}-1\right)$.

Or you can compute indefinite integrals.
(c) $x(T)=10 \Longrightarrow 9.8\left(T+e^{-T}-1\right)=10$.
T is determined by $T+e^{-T}=\frac{99}{49}$. Since the function $T \mapsto T+e^{-T}$ is strictly increasing for $T>0$, there exists a unique solution $T \in(1,2)$.
(2) (a) $r^{2}-2 r-3=0 \Longrightarrow r=3,-1 \Longrightarrow y=a e^{3 t}+b e^{-t}$.
(b) $1=y(0)=a+b,-1=y^{\prime}(0)=3 a-b \Longrightarrow a=0, b=1 \Longrightarrow y=e^{-t}$.
(3) (a) $\frac{d y}{d t}=2 y-5 \Longrightarrow \int \frac{d y}{y-\frac{5}{2}}=\int 2 d t \Longrightarrow \log \left|y-\frac{5}{2}\right|=2 t+C_{1}$ for some constant $C_{1} \in \mathbb{R}$. Then $\left|y-\frac{5}{2}\right|=e^{C_{1}} e^{2 t}=C_{2} e^{2 t}$, for $C_{2}=e^{C_{1}}>0$. We can include $C_{2}=0$ (corresponding to $y \equiv \frac{5}{2}$, the stationary solution). Then $y-\frac{5}{2}=C e^{2 t}$, for $C= \pm C_{2} \in \mathbb{R}$. From $y(0)=y_{0}, y=\frac{5}{2}+\left(y_{0}-\frac{5}{2}\right) e^{2 t}$. As $t \rightarrow+\infty$, we either have (i) $y \rightarrow+\infty$ if $y_{0}>\frac{5}{2}$,
(ii) $y \rightarrow-\infty$ if $y_{0}<\frac{5}{2}$, or (iii) $y \equiv \frac{5}{2}$ if $y_{0}=\frac{5}{2}$.
(b) Separating variables as above, $\frac{d y}{d t}+8 y=10 \Longrightarrow\left|y-\frac{5}{4}\right|=C e^{-8 t} \Longrightarrow y=\frac{5}{4}+\left(y_{0}-\frac{5}{4}\right) e^{-8 t}$. As $t \rightarrow+\infty, y \rightarrow \frac{5}{4}$ for any y_{0}.
(a) $y^{\prime}+y=e^{-t} \Longrightarrow\left(e^{t} y\right)^{\prime}=1 \Longrightarrow y=(t+C) e^{-t}$. From $y(0)=1, y=(t+1) e^{-t}$.
(b) $t y^{\prime}+y=3 t \cos 2 t \Longrightarrow(t y)^{\prime}=3 t \cos 2 t \Longrightarrow t y=3 \int t \cos 2 t d t=3\left[(t)\left(\frac{\sin 2 t}{2}\right)-(1)\left(-\frac{\cos 2 t}{4}\right)\right]+C \Longrightarrow$ $y=\frac{3}{2} \sin 2 t+\frac{3}{4 t} \cos 2 t+\frac{C}{t}$. We used integration by parts in the form: $\int u v^{\prime \prime}=u v^{\prime}-u^{\prime} v+C$ for $u^{\prime \prime}=0$.
(c) $2 y^{\prime}+y=\frac{3}{2} t^{2} \Longrightarrow\left(e^{t / 2} y\right)^{\prime}=3 t^{2} e^{t / 2} \Longrightarrow e^{t / 2} y=\frac{3}{2}\left[\left(t^{2}\right)\left(2 e^{t / 2}\right)-(2 t)\left(4 e^{t / 2}\right)+(2)\left(8 e^{t / 2}\right)\right]+C$ so $y=3\left(t^{2}-4 t+8\right)+C e^{-t / 2}$.
(d) $t y^{\prime}+(t+1) y=t \Longrightarrow y^{\prime}+\left(1+\frac{1}{t}\right) y=1$. The integrating factor (which is not obvious) is $e^{\int\left(1+\frac{1}{t}\right) d t}=$ $e^{t+\log t}=t e^{t}$. So $\left(t e^{t} y\right)^{\prime}=t e^{t}, t e^{t} y=(t-1) e^{t}+C, y=\frac{t-1}{t}+\frac{C}{t} e^{-t}$.
(5) We'll need $\int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}+C$ and $\int e^{a x} \sin b x d x=\frac{e^{a x}(-b \cos b x+a \sin b x)}{a^{2}+b^{2}}+C$. Digression: To get it without integrating by parts twice, one can use complex variable $\left(\operatorname{Re} \int e^{(a+i b) x} d x=\right.$ $R e \frac{e^{(a+i b) x}}{a+i b}+C$ etc.) or by integrating the two equations

$$
\binom{\left(e^{a x} \cos b x\right)^{\prime}}{\left(e^{a x} \sin b x\right)^{\prime}}=\binom{e^{a x}(a \cos b x-b \sin b x)}{e^{a x}(a \sin b x+b \cos b x)}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\binom{e^{a x} \cos b x}{e^{a x} \sin b x} .
$$

(a) $y^{\prime}-y=2 t e^{t} \Longrightarrow\left(e^{-t} y\right)^{\prime}=2 t \Longrightarrow\left(t^{2}+C\right) e^{t}$. From $y(0)=1, y=\left(t^{2}+1\right) e^{t}$. The interval of existence is $(-\infty,+\infty)$.
(b) $y^{\prime}+\frac{2}{t} y=\frac{\cos t}{t^{2}} \Longrightarrow\left(t^{2} y\right)^{\prime}=\cos t \Longrightarrow y=\frac{\sin t+C}{t^{2}}$. From $y(\pi)=0, y=\frac{\sin t}{t^{2}}$. Interval of existence: $(0,+\infty)$. (Note that the initial point $\pi>0$ and we need $t \neq 0$ on the interval of existence.)
(c) $y^{\prime}-y=t-\sin t+e^{2 t} \Longrightarrow\left(e^{-t} y\right)^{\prime}=t e^{-t}-e^{-t} \sin t+e^{t} \Longrightarrow e^{-t} y=-(t+1) e^{-t}+\frac{e^{-t}(\sin t+\cos t)}{2}+e^{t}+C$.

From $y(0)=0, C=-\frac{1}{2}$. So $y=-t-1+\frac{\sin t+\cos t}{2}+e^{2 t}-\frac{1}{2} e^{t}$. It exists on $(-\infty,+\infty)$.
(d) $\sin t y^{\prime}-2 \cos t y=\sin ^{3} t \Longrightarrow\left(\sin ^{-2} t y\right)^{\prime}=1 \Longrightarrow y=(t+C) \sin ^{2} t . y\left(\frac{\pi}{2}\right)=1$ yields $C=1-\frac{\pi}{2}$, so $y=\left(t+1-\frac{\pi}{2}\right) \sin ^{2} t$. Interval of existence: $(0, \pi)$ (because we need to keep $\sin t \neq 0$, near $\frac{\pi}{2}$).
(6) $y^{\prime}+2 y=3+2 \cos 2 t \quad \Longrightarrow \quad\left(e^{2 t} y\right)^{\prime}=3 e^{2 t}+3 e^{2 t} \cos 2 t \quad \Longrightarrow \quad e^{2 t} y=\frac{3}{2} e^{2 t}+3 e^{2 t} \frac{2 \cos 2 t+2 \sin 2 t}{4}+$ $C \Longrightarrow y=\frac{3}{2}+\frac{1}{2}(\cos 2 t+\sin 2 t)+C e^{-2 t}$. By $y(0)=0, C=-2$ so $y=\frac{3}{2}+\frac{1}{2}(\cos 2 t+\sin 2 t)-2 e^{-2 t}$.
As $t \rightarrow+\infty, y$ oscillates between $\frac{3-\sqrt{2}}{2}$ and $\frac{3+\sqrt{2}}{2}$. This can be seen by rewriting

$$
\cos 2 t+\sin 2 t=\sqrt{2} \sin \left(2 t+\frac{\pi}{4}\right)
$$

$y^{\prime}+y=e^{-a t} \Longrightarrow\left(e^{t} y\right)^{\prime}=e^{(1-a) t}$. When $a \neq 1, y=\frac{1}{1-a} e^{-a t}+C e^{-t}$. When $a=1$, we have $y=(t+C) e^{-t}$ as in Q4(a). In both cases we have $y(t) \rightarrow 0$ as $t \rightarrow+\infty$.
Note that the "answer" is the complete argument. The case $a=1$ must be treated separately.
(a) $y^{\prime}+y^{2} \sin x=0 \Longrightarrow-\frac{y^{\prime}}{y^{2}}=\sin x \Longrightarrow\left(\frac{1}{y}\right)^{\prime}=\sin x \Longrightarrow \frac{1}{y}=-\cos x+C \Longrightarrow y=\frac{1}{-\cos x+C}$
(b) $y^{\prime}=\frac{x-e^{-x}}{y+e^{y}} \Longrightarrow\left(y+e^{y}\right) y^{\prime}=x-e^{-x} \Longrightarrow \frac{y^{2}}{2}+e^{y}=\frac{x^{2}}{2}+e^{-x}+C$.
(c) $y^{\prime}=\frac{1+y^{2}}{2+x^{2}} \Longrightarrow \frac{1}{1+y^{2}} y^{\prime}=\frac{1}{2+x^{2}} \Longrightarrow \tan ^{-1} y=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C$.

Note that $\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}$ while $\left(\frac{1}{2} \log \left(1+x^{2}\right)\right)^{\prime}=\frac{x}{1+x^{2}}$.
(d) $y^{\prime}=\frac{x}{y} \Longrightarrow 2 y y^{\prime}=2 x \Longrightarrow y^{2}=x^{2}+C$.
(9) (a) $y^{\prime}=(1-2 x) y^{2} \Longrightarrow\left(\frac{1}{y}\right)^{\prime}=2 x-1 \quad \Longrightarrow \quad \frac{1}{y}=x^{2}-x+C$. From $y(0)=2, C=\frac{1}{2}$. Since $x^{2}-x+\frac{1}{2}=\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4} \geq \frac{1}{4}>0$, we have $y=\frac{1}{x^{2}-x+\frac{1}{2}}$, existing on $(-\infty,+\infty)$.
(b) $y^{\prime}=x y^{3}\left(1+x^{2}\right)^{-\frac{1}{2}} \Longrightarrow-\frac{1}{2 y^{2}}=\sqrt{1+x^{2}}+C$. From $y(0)=1, C=-\frac{3}{2}$. So $y^{2}=\frac{1}{3-2 \sqrt{1+x^{2}}}$, or $y=\sqrt{\frac{1}{3-2 \sqrt{1+x^{2}}}}$. The positive square root is taken because the $y=1>0$ at $x=0$. Solving
$3-2 \sqrt{1+x^{2}}>0$, the interval of existence is $\left(-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$.
(c) $y^{\prime}=\frac{3 x^{2}-e^{x}}{2 y-5} \Longrightarrow(2 y-5) y^{\prime}=3 x^{2}-e^{x} \Longrightarrow y^{2}-5 y=x^{3}-e^{x}+C$. The initial condition $y(0)=1$ gives $C=-3$, i.e. $y^{2}-5 y=x^{3}-e^{x}-3$. y can be solved explicitly, by completing the square (say), as

$$
y=\frac{5}{2}-\frac{1}{2} \sqrt{x^{3}-e^{x}+\frac{13}{4}}
$$

The negative square root is chosen because of the initial condition $y(0)=1$. Since the initial value is given, you should always choose the branch of the square root.
The solution exists as long as $2 y-5 \neq 0$, i.e. $y \neq \frac{5}{2}$. The corresponding x-interval is determined by solving $x^{3}-e^{x}-\frac{13}{4}>0$. By intermediate value theorem, it has solutions in $(-2,0)$ and in $(0,5)$. Let x_{-}and x_{+} be respectively the negative and positive solutions closest to 0 , the initial value. The interval of existence is then $\left(x_{-}, x_{+}\right)$.
This is how to deal with the question without wolfram alpha, or whatever solver. (But, of course, they help.) (d) $\sin (2 x) d x+\cos (3 y) d y=0 \Longrightarrow-\frac{\cos 2 x}{2}+\frac{\sin 3 y}{3}=C$. By $y\left(\frac{\pi}{2}\right)=\frac{\pi}{3}, C=\frac{1}{2}$. So

$$
\frac{\sin 3 y}{3}=\frac{1+\cos 2 x}{2}=\cos ^{2} x
$$

Extra discussions concerning the interval of existence:
We need to ensure that $\cos (3 y) \neq 0$ on the interval of existence. Near $y=\frac{\pi}{3}$, the condition for y is $\frac{\pi}{2}<3 y<\frac{3 \pi}{2}$. This corresponds to requiring $|\sin 3 y|<1$ (strictly!). Thus the interval of existence is determined by the equation $\cos ^{2} x<\frac{1}{3}$ near $x=\frac{\pi}{2}$, giving $-\frac{1}{\sqrt{3}}<\cos x<\frac{1}{\sqrt{3}}$. Taking the principal branch of $\cos ^{-1}(\cdot)$ so that $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \in\left(0, \frac{\pi}{2}\right)$, the interval of existence is given by

$$
\left(\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right), \pi-\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right) .
$$

1 point has been awarded, even if you don't get the last part. This is done in our database (you won't see it but you get the point).

