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1, Each candldate should be prepared to produce his llbrary/AMS card upon requsst.

2. Read and obserwe the following rules:

No candidate shall be permitted to eDter the examination roorn after ihe expiration of one half honr, or to leave

durirrg the fiLit liatl' horrr'ol Lhe 'exa[rinatior.

CaudidarLes are noi permii:l;ed Lo ask qucstions of the invigila[ors, except in cases of srrpposcd errols or arnbiguiiies

ir: examination questiorrs.

CAUTION - Cartdidates guilty of any of the tbllorving or similar practices shall be inrrnediately dismissed fronr the

examination and shall be liable to disciplinary action.

(a) Making use of any books, papets ot memolanda, other than those autholized by the examiners.

(b) Speaking or communicating with other candidates.

(c) Purposely exposing written papers to the view of other candidates. The plea of accideut or forgetfulness

shall not be received.

3, Smoking is not permitted during examinatlons.
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(15 points) 1, This question contains three parts, For each question, multiple choices are allowed.

(5 points) (a) The characteristic root equation fbr a tenth orcler linear horlogeneous orciinary
ifferential equation with constant coefficients is given by

(r - 2)3(r + r) ((r - r)'+ 1)' : o,

. Which of the fbllowings are solutions to the differential equation?

(A) t3e2t; (B) te2t; (C) t2etsint; (D) t'; (E) t3e'cosi; (F) tet; (G) t-'

Your a.swe. is (8, (- , q

(5 points) (b) Consider the fbllowing system

, (t r)**(rrr)x:(2 j) \, /
For the method of undetermined coefficients which of the followings is the fbrm of the
special solution?

(A) dest+ar; (e) td,e3t+Et+a; (c) de3'+ti+d; (D) tde3t4-6dt+td+i; (E) Noneor
the above

Your answer is ( )

(5 points) (c) Consider the partial fractions of (-p-+I+,+fr{}G:D, Which of the lbtlowings are part of
the partia,l fractions decomposition?

(a) ##; (n) ffiy; (c) 3; (D) *; (E) ffi; (F) ffi; (G) *
Your ansrver ls ( [ , C r1, F, q,
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(25 points) 2. Fol the fbllowing system of ordinary differential equation, (a) find the general soluiions; (b)
classify the types (saddle, node (source or sink), spirals) and the stability; (c) draw a f'erv
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(20 poinis) i. Ur" the method of variation of parameters to obtain the general solutions of
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(20 points)

(10 points)

(10 points)
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4. This problem contains two parts.

(a) Write the fbllowing lunction

s(t): { lr,,i, ='^1"r( *oo\ \/

as linear sums of 11(t- "),H(t- 
c)f (t-c). Then use the list of Laplace transfbrm

lbrmulas to find its Laplace transfbrm.

(b) Compute the I.,aplace transfbrm of the fbllowing functions

(A) II(t -t)"'; (B) d(, -7)"'; (C) 
"ff 

e"-tsin(r)d,

(List of Lapiace translblm fbrrnulas is attached at the last page)



(20 points) 5. The Laplace transfbrm of the solution to a differential equation is given by

Y(s): *3+,= ??-.'= ,,n4-,\"'/ s2 +4' (s2 + 1)(s2+ 4)' s2 +4'

(a) Find the solution A(t) bV inverting Y(s). Hint:

1111:--
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(s2+1)(s2+4) - 3s2t-1 3s2+4'

(b) Provide a second-order differential equation of the form

y" + bu' )- cy : g(t),a@): yo,y'101 = y1

for y(t) and initial values for y(0) and y/(0) that has a transformed solution given by

@
\''

Y(s). You may use H(t - c) and d(t,- c).

(List of Laplace transfbrm fbrmulas is attached at the last page)
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